
Autonomous Navigation based on 2-Point Correspondence using ROS

Submitted by: Ran Breuer, Li-tal Kupperman

Advisor: Majd Srour, Prof. Ehud Rivlin

Intelligent System Laboratory, CS, Technion

January 26, 2014

Abstract
This project’s objective is to implement a ROS node that uses the algorithm and theorems shown in [1].

The project’s program implementation addresses the problem of robot navigation using only visual tools in an
indoor planar environment. The robot gets as its input a target, in the form of an image taken from the target
pose and, using its own builtin camera, navigates itself to the aforementioned target pose. At each step, the
robot captures a single image from its current pose and should compute the angles of rotation and distance to
the desired target. Under the assumption of planar movement only, this computation is based on a specific and
special structure of the Essential Matrix and Homography, allowing the use of only 2-point correspondence when
computing - which gives a higher precision and numerical stability. Based on a Pioneer robot with a builtin Axis
IP Camera, the robot’s control and entire program runs under ROS (Robot Operating System) and consists of
several nodes working simultaneously.

index terms - Visual Navigation, Mobile Robotics, Essential Matrix, Homography

1 Background

Figure 1: Epipolar Geometry example

1.1 Epipolar Geometry
Epipolar geometry describes a geometric relationship between the positions of corresponding points in two different
images.

Given two distinct cameras, each camera has a center of projection denoted O
L

and O
R

. Both cameras are
pointed towards the point P and create two different image planes. The projection of P onto each of the image
planes is denoted P

L

and P
R

respectively.

1

1.1.1 Epipolar Point

As mentioned above, the two cameras are distinct, and therefore each center of projection O projects onto the other
camera’s image plane. These two image points, located on the image planes, are the epipolar points, denoted by
E

L

and E
R

.

1.1.2 Epipolar Line

According to the example in figure 2, the line O
L

–P is seen by the left camera as a point because it is directly in
line with that camera’s center of projection. However, the right camera sees this line as a line in its image plane.
That line as it is seen by the right camera (E

R

–P
R

) is called an Epipolar line. Symmetrically, the line O
R

–P - seen
by the right camera as a point is seen as an epipolar line E

L

–P
L

by the left camera. An epipolar line is a function
of the 3D point P . Since the 3D line O

L

–P passes through the center of projection O
L

, the corresponding epipolar
line in the right image must pass through the epipolar point E

R

(and correspondingly for epipolar lines in the left
image). This means that all epipolar lines in one image must intersect the epipolar point of that image. In fact,
any line which intersects with the epipolar point is an epipolar line since it can be derived from some 3D point X.
Given a point in the left image, we don’t have to search the whole right image for a corresponding point. This
“Epipolar Constraint” reduces the search space to a one-dimensional line.

Figure 2: Epipolar Geometry

1.2 Homography
Homography is a 3x3 matrix, which describes the relation between a plane in the world and a perspective image of
that plane.

The homography matrix is used for two main purposes:

1. One Image -
Warping and rotating an image, so it would be correlated with the relevant plane.
When applying the Homography matrix to every pixel, the new image is a warped version of the original
image.

2

2. Two images -
Describes how image points from one image are mapped to another image. Meaning, the Homography de-
scribes how two images are related to one another. In other words, the homography is used for mapping
epipolar lines. It applies only when both images are viewing the same planar scene, but were taken from
different positions. Or both images were taken from the same camera, standing in one place, but from a
different angle (orientation).

Using homography, we can write the transformation of points in 3D of the image taken form one of the
cameras to the other image, taken from the second camera.

Given the homography matrix: H and two pixel coordinates: p, p’, one for each image, the homography
relates the two pixel coordinates, in the two images, as follows: p0 = Hp or p ⇥ Hp0 = 0. The second
equation tells us that the vectors p and Hp0 are parallel. This is the geometrical meaning of the transforma-
tion described above, which transforms a pixel from one plane, to the other, according to the cameras positions.

In a calibrated case, there is another homography matrix - H
c

between the metric coordinates p, p0. The
relationship described as follows: P ⇥ H

c

p0 = 0 and H = KH
c

K�1 (where K is the calibration matrix).
Given a known rotation R and calibration K, then the homography H equals KRK�1 , and it can be used
directly as follows: p0 = KRK�1p. Applying this homography to one of the images gives an image that we
would get if the camera was rotated by R.

1.3 Essential Matrix
Essential Matrix is a 3x3 matrix, which relates corresponding points in two distinct images, of the same planar
scene.

Under a rotation matrix R and a translation vector T , the essential matrix is given by E = [T]⇥ R = R
⇥
RTT

⇤
⇥.

The essential matrix is relevant for calibrated cameras, where the inner camera parameters (aka ’Intrinsic Parame-
ters’) are known. Under the equation shown above, it holds that P 0TEP = 0 where E is the essential matrix, and
P, P 0 are two distinct points in two different image planes. This equation is derived from the epipolar lines. Given
a set of corresponding image points, it is possible to estimate an essential matrix which satisfies all the points in the
set according to the given images. However, since images are exposed to "noise", which is the common case in any
practical situation, it is not possible to find an essential matrix which satisfies all the points in the set exactly. It is
possible to determine or estimate an essential matrix which optimally satisfies the given set of corresponding image
points. The most common approach is to use the method of solving a total least squares problem. The essential
matrix can be useful for determining both the relative position and orientation between the two given cameras and
the 3D position of corresponding image points. Once an essential matrix is found, the rotation matrix (and thus
the rotation parameters) can be fully recovered and the translation is recovered only up to a scale factor.

1.3.1 Essential Matrix in the Planar Model

In our special case, and the most common, a robot’s movement is restricted to the plane parallel to the ground, i.e.
the X ⇥Z plane. The robot’s rotation is limited to go around the Y axis only. Hence, the rotation and translation
matrices are as follows:

R =

2

4
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

3

5 T =

2

4
x
0

z

3

5

3

We now use polar coordinates for the translation, writing x = ⇢ sin�, z = ⇢ cos�. And so we receive the reduced
essential model under the planar movement scene as follows

E = ⇢

2

4
0 cos (✓ � �) 0

� cos� 0 sin�
0 sin (✓ � �) 0

3

5

2 Algorithm(s) used

2.1 Introduction
In this section we will review the various parts and phases that construct the navigation algorithm. We wish to
move a robot to an unknown target position and orientation denoted by S, which is specified by an image Itaken
from that position. Denote the current unknown robot’s position by S0, our goal is to lead the robot to S. We
assume the camera is calibrated and that its intrinsic parameters are already known. To determine the motion
needed by the robot we need to recover the position and orientation of the robot relative to S. given that I
and I 0, the images taken from S and S0 respectively, have a large enough overlap, we can extract matching feature
correspondences from these images and estimate an essential matrix. By finding the essential matrix E that satisfies
as many correspondences as possible, we can extract the rotation and translation matrices from E and from those
determine the motion needed to get the robot to S. While the rotation matrix and parameters that construct it
can be fully recovered, the translation matrix can only be recovered up to a scale factor, forcing us to use another
image to accurately calculate the distance to S.

2.2 Program Flow
The navigation process uses the following algorithm scheme:

1. Given a target image, capture an image from the current pose.

2. Extract and match features from both images

3. From all matches, filter the largest inliers set using some variation of PROSAC.

4. Using the best model estimated, extract matrices R and T .

5. Calculate the distance to target, explained below.

6. Move to a new pose and repeat 1 until target pose is reached

This algorithm uses an estimated essential matrix to determine the robot’s next move, therefore there are several
iterations required to get to the desired target pose at a certain precision.

4

Figure 3: Program Flow Diagram

2.3 Finding a good starting point
Before we can start following the algorithm mentioned above, given we cannot know the robot’s location relative to
the target, and not even be sure that both images I and I 0 will have large enough overlap so that matching features
will be found, a good starting point for the algorithm needs to be found. We search for a good starting point, i.e.
a pose where an image that would be taken from will have large enough overlap with the target image. Starting at
a certain position, we would like to scan the space around the robot in an efficient enough matter so that we can
cover the whole room and take a 360

� images of the room. As soon as we find a good enough spot to start the
algorithm, we stop the search cycle and go to step 1. The search algorithm scans the room in an almost circular
motion, where on each stop the robot scans on several angles.

2.4 Finding Correspondence
In order to find right correspondences, visual features are extracted and matched from both images. Feature
extraction is done by using the SIFT method, as it is scale invariant, matching is done by OpenCV ’s Flann feature
matcher (Brute Force Matcher can be used also). Out of the features and matches formed, we filter those whose
distance ratio is higher than a certain degree, this is used to eliminate “noise” or wrong and unnecessary samples
from which to estimate the model. After having extracted and matched features from both images, we try to find
the largest subset of inliers that will agree on the same model, i.e. E, the essential matrix estimation. We use a
variation of the PROSAC (PROgressive SAmple Consensus) method paradigm to find the largest set of inliers
from which we can extract a better estimation for E.

5

2.5 Estimating the Essential Matrix
As shown in (1.3.1) in our case, the essential matrix is reduced to the form of

E = ⇢

2

4
0 cos (✓ � �) 0

� cos� 0 sin�
0 sin (✓ � �) 0

3

5

where ✓ is the rotation angle around the Y-axis, and � is the angle needed to take to get to the desired target
pose, where its translation in polar coordinates is x = ⇢ sin�, z = ⇢ cos�.

Due to the number of degrees of freedom (DoF) - 2 - we need only a 2 point correspondence to estimate an
essential matrix. However, as we don’t know in advance which 2 points to choose in order to get the better and more
accurate result, we use our PROSAC iterations to get the matrix E with which the largest set of points (inliers)
agree. As shown in [1], given points in I and their match in I 0, p

i

= (x
i

, y
i

) , ep
i

= (x̃
i

, ỹ
i

) respectively, we can use
the fact that for each i: p̃T

i

Ep
i

= 0 and assemble these equations in the form of a linear equation matrix (1) Ax = 0

where

A
i

=

⇥
ỹ
i

�x
i

ỹ
i

y
i

x̃
i

y
i

⇤
and x =

2

664

x1

x2

x3

x4

3

775 (2)

where E =

2

4
0 x4 0

�x2 0 x1

0 x3 0

3

5. However, as we only need 2 degrees of freedom, we can modify these equations so that

we can use only two equations to solve this linear equation system. We modify the problem to an optimization
problem:

argmin
�
kAxk A 2 R2⇥4, x 2 R4

(3)

s.t x2
1 + x2

2 = 1 ^ x2
3 + x2

4 = 1

As proved in [1], this problem is similar to finding the intersection between a unit-circle around the origin and
an ellipse formed by the diagonal matrix from the SVD extraction of the aforementioned optimization problem.
When finding the intersection there can be:

1. 2 (or 4) intersection points - our essential matrix solution derives from that.

2. no intersection points - meaning there is no solution found from the 2 point correspondence.

3. an infinite number of points - meaning this is a Pure Rotation scenario, which will be discussed later.

Once we found a good essential matrix estimation, we now try to find, using PROSAC runs, the solution that holds
(1) for as many matches as possible, i.e. the largest support set of inliers.

From our essential matrix solution we have just computed, knowing that it is supported by the largest set of
inliers possible, we can extract �, ✓ using them to determine the direction in which to direct the robot, and its
rotation (or orientation modification) to be made.

2.6 Pure Rotation
A pure rotation scene describes a scene where the robot’s position is at the target, however there is a difference in
orientation. This can be resolved by a 1 point correspondence between the target image and source image. If we

6

are at a pure rotation scene, the essential matrix will consist of only the influence of ✓ and thus require only one
equation to solve. However, with using only an estimation for the essential matrix, we find a probability for a scene
to have pure rotation traits, where if the probability is high enough we deduce it is a pure rotation. Note that in
our implementation, we recognize that we are at the target location and orientation by the fact that we are in a
pure rotation scene constructed by a low angle ✓.

2.7 Calculating Distance
After Calculating the rotation angle ✓ and the direction to the target pose, �, there is still the matter of the
distance ⇢ which is needed to advance to the target. In [2, 3] distance is determined by moving toward the target
in the direction determined by � and by a constant step �. The amount of steps needed to advance to the target is
calculated by the factor of improvement after making the initial step. In addition, in our implementation, a different
approach is used as well. To determine the distance to the target, we move the robot a predetermined step and
direction to another pose S”, and take a 3rd image I”. By using the same algorithm for essential matrix extraction
from I”, we get the angles ✓0 and �’. Now, we use the 3 poses S, S0, S” that form a triangle whose angles we can
recover using our knowledge of ✓ and � from both previous locations. Using basic trigonometry and the fact that
we know one side of this triangle (the step we took from S0 to S”) we can now recover the exact distance to the
target. In our implementation, we implemented both methods of distance computation and compared them both.

While the triangle method has been proven to be more accurate in common cases, the Cross-ratio (a.k.a ’X-
ratio’) method, as seen in [1] is less prone to errors in certain situations. The triangle method suffers from large
errors due to “flat triangle” situation, in which the 3rd pose’s image is of insignificant difference from its predecessor,
resulting in small deltas between computed and angles and thus numeric cancelation occurs.

7

Figure 4: Calculating distance to target by 2 poses

3 Design and Implementation
Our implementation of this algorithm is built on a Pioneer robot unit with an Axis IP Camera built on it. Using
several ROS nodes to communicate with the different parts of the algorithm, we implemented a ROS node that
runs the algorithm on the targets it is given.

3.1 Design Concepts & Modules
The implementation is constructed of several modules, where each performs a service for the main module, the Auto
Navigator. The Auto Navigator is given a target in the form of an image file, indicating the next target pose to go
to by using the algorithm mentioned above. Then, by using the Robot Controller and Image Capturer to move the
robot and get the images from the camera at its pose. The data, both target image and the newly captured image
are then transferred to the Epipolar Solver, where the angles ✓ and � are extracted. Then we use these angles as
the next step towards the target. This whole process is repeated until we reach a pure rotation scene or the number
of iteration exceeds the maximum set as a limit.

8

3.1.1 Auto Navigator

The Auto Navigator is our node’s main module, it holds instances of all other service modules, combining them all
in order to navigate the robot efficiently through the algorithm.

Each instance of this class can navigate automatically to a designated target pose in the form a target image,
or a path to an image file containing this target.

class AutoNavigator {
RobotContro l l e r c o n t r o l l e r ;
ImageCapturer imgCapturer ;
ImageUndistorter und i s t o r t e r ;
Ep ipo la rSo lve r ep i So l v e r ;
. . .

public :
AutoNavigator (int argc , char⇤ argv []) ;

AutoNavigatorResult goToTarget (const char⇤ targetFi lename , int maxIter = 50) ;
} ;

Auto Navigator: Interface

The Auto Navigator can navigate to any given single target, if number of iteration exceeds the limit given or
starting point isn’t found - a failure message is returned.

3.1.2 Robot Controller

In order to move and rotate the robot to where we desire, we will use the Robot Controller interface. The controller
enables a simple abstraction of robot maneuvering and movement control, using simple Move,Rotate&TwistAndMove
commands. This module communicates with the ROSARIA node (explained below) and transfers commands via
/cmd_vel/Twist messages.

class RobotContro l l er {
. . .

public :
RobotContro l l e r (int argc , char⇤ argv []) ; //Ctor

/⇤ order o f execu t ion i s r o t a t e f i r s t � move second . ⇤/
void twistAndMove (f loat angle , f loat d i s t ance) ;

void r o t a t e (f loat ang le) ;
void move(f loat d i s t anc e) ;

} ;

Robot Controller: Interface

9

3.1.3 Image Capturer & Undistorter

Our robot is equipped with an Axis 207MW IP Camera, which when turned on broadcasts a stream of images at
30 fps. As our implementation only requires one image (frame) per iteration, we use the Image Capturer to get a
single frame from the camera, by simply calling the captureImage() method. However, upon image retrival from
the camera, it is distorted, parallel line may seen crooked, and the depth of field is deceiving. We now need to call
the Image Undistorter which, as its name suggests, undistorts the image given by the camera using the calibration
matrix and distortion coefficients recovered when we calibrated the camera.

Figure 5: An original distorted image from the camera & its undistorted unidentical twin

class ImageCapturer {
ImageUndistorter und i s t o r t e r ;

public :
ImageCapturer (int argc , char⇤ argv []) ;
~ImageCapturer () ;
Mat captureImage () ;

} ;

Image Capturer: Interface

class ImageUndistorter {
public :

ImageUndistorter () ;
~ImageUndistorter () ;
void Undistort (const cv : : Mat& src , cv : : Mat& dst) ;

} ;

Image Undistorter: Interface

10

3.1.4 Epipolar Solver

The Epipolar Solver is the heart of the navigation process. It encapsulates the essential matrix approximation, SIFT
feature extraction, feature matching process and many more within. The Epipolar Solver also enables distance
computing given the results from both images processing and angles extraction. All image manipulation and
processing is done by using OpenCV ’s functions in C ++.

Feature extraction is done with the SIFT feature extractor and feature matching is done with Flann Matcher.
Distance recovery is done by retrieving all of the aforementioned triangle angles and computing the missing side
length (2.7).

3.1.4.1 PROSAC Essential matrix Estimation The essential matrix estimation is based on the following
algorithm:

Algorithm 1 PROSAC Essential Matrix Estimation

1. Extract SIFT features from both images

2. Match features and filter ’bad’ matches

3. FOREACH 2 matches:

(a) Create an essential model E based on the 2 matches as shown in (2.5)
(b) Collect the largest subset S

E

of inliers that agree with E

4. return the essential model E where S
E

is the largest.

11

c l a s s Ep ipo la rSo lve r {
pub l i c :

Ep ipo la rSo lve r () ;
v i r t u a l ~Ep ipo la rSo lve r () ;
c l a s s notEnoughPoints : pub l i c except ion {} ;
c l a s s noEs s en t i a l So l u t i on : pub l i c except ion {} ;
. . .

i n t f i n dS i f tF e a t u r e s (
Mat& image1 , Mat& image2 ,
vector<Point3d>& MatchedOutput1 ,
vector<Point3d>& MatchedOutput2 ,
vector<double>& distanceRat ioVec) ;

i n t p r o s a cE s s en t i a l (const vector<Point3d>& inputPoints1 ,
const vector<Point3d>& inputPoints2 ,
Mat& outputMat ,
vector<int>& b e s t I n l i e r s ,
f l o a t thresho ld ,
i n t maxTrials , i n t maxNoImprove) ;

i n t calculateAnglesFromImages (Mat& img1 , Mat& img2 , double& theta ,
double& phi , i n t& dir_s ign) ;

double ca lcDis tanceToTargetTr iang le (double alpha , double theta1 , double phi1 ,
double theta2 , double phi2 , double x) ;

double calcDistanceToTargetXRatio (const vector<Point3d>& framesFMatchedFT , const vector<Point3d>& framesTMatchedFT ,
const vector<Point3d>& framesFMatchedFS , const vector<Point3d>& framesSMatchedFS , double phiFT , double thetaFT) ;

p r i va t e :
. . .

}

Epipolar Solver: Interface

12

Figure 6: Auto Navigator Interface Diagram

3.2 Using ROS
ROS is an open-source, meta-operating system used on robots. It provides services similar to other operating
systems, including hardware abstraction, low-level device control, message passing between processes and many
more. ROS works with nodes - a ROS Node is a process that runs independently and performs a certain task. A
node can subscribe or publish to a topic, this is the way to communicate between nodes. Each topic is considered
a service to which a node (task) can publish certain data and\or another node can retreive data from.

Working with ROS enables a simple abstraction when working with robots, as it provides easy to handle wrappers
for mechanical operations, e.g. moving the robot somewhere or taking a picture from a webcam.

In our project we have used the following packages and nodes:

3.2.1 ROSARIA

ROSARIA is a ROS package that allows simple manipulation of various robots through a very simple API. It is
a ROS wrapper for MobileRobots’ ARIA C++ library. ROSARIA allows controling a robot by simply setting its
velocity (angular and linear) and retrieving its odometry data too.

The package subscribes to the cmd_vel topic and through it receives new velocity data in the form of a
geometry_msgs/Twist message (including angular and linear velocities), and thus setting the new parameters
to its assigned robot, in our case the Pioneer robot.

3.2.2 Axis Camera

The Axis camera package subscribes to a webcam attached to the computer and publishes its photo stream to a
specified topic in the form of a image_raw/compressed message. With only subscribing to the aforementioned
topic, our program, in our Image Capturer module, can receive the photo stream and use it to ’capture’ a single
frame.

13

Figure 7: ROS Nodes working simultaneously

4 Challenges

4.1 Eliminating bad images
When collecting the source images from the current pose, there is a matching process based on similarity between
image features. The Flann Feature Matcher and the Brute Force Matcher OpenCV provide, along with every other
feature (& descriptor) matchers, construct sets of pairs of matched features up to a certain thershold. However, when
matching, some of the matches can be inaccurate due to the nature of the matching (matching specific features and
not looking at whole (bigger) picture) resulting in rough matching that sometimes can match completely different
scenes and call them identical. When searching for a good starting point (2.3) and further on when computing the
data needed for navigation (2.4) we need to be able to rely on the matching being true to the scenes. By setting
a minimal thershold parameter for match distance, we are able to verify that the matching will only get matches
close enough to provide accurate results.

The threshold is set based on the minimal distance of all matches found between the two scenes - t , and we set
the threshold to be �t where � is a factor set in advance. With this thershold set we assure only the ’good’ matches
will help computation. More over, after setting a max for this threshold, we eliminate bad scenes from being even
considered for matching. This being a result of the fact that even a scene that has absolutely no relation to the
target scene & pose, has a match with a certain distance (which would be much greater than our max threshold).

In short, by assuring that a set of matches S, where the best (with closest distance) match m⇤ to the target
scene is under a threshold t

max

and every other match holds dist(m)  dist(m⇤) ⇤ � - we are sure to eliminate all
bad images from interrupting the computation process and thus the whole navigation procedure.

In the tests ran, we set t
max

= 90 , � = 2.

14

4.2 Algorithm divergence near target
The algorithm provided above is found to converge to the target up to a certain point. When reached that point,
where distance to target T is close and we reach a close to ’Pure Rotation’ scene - the algorithm starts diverging
and moving the robot away from the target.

A solution to this problem is setting the target to be any pose with orientation ✓ and distance d relative to the
target so that ✓ < ✓

max

, d < d
max

.
In case of a small difference between two given images, defined by the maximum absolute distance between

matching features, if said maximum is under a predefined bar - an exception will be thrown to indicate we are close
enough to the target.

In our tests ran we set ✓
max

= 5

�, d
max

= 0.1
m

.

4.3 Computing distance to target - Triangle method
As shown in 2.7, the distance to the target pose, in the triangle method, is computed by using two poses S and S’
and extracting ', ✓ from both poses. By using basic trigonometry and triangles realtions to extract the distance
from S0 to the target. However, if the target T is too far from S and S0 the difference in angles extracted between
the two poses is too small or insignificant to compute the distance well. When receiving too small of a difference
between ', ✓ , under a minimum set value ✏, there is a large chance of Numerical Cancelation between values and
thus receiving wrong (and many times very large and inaccurate) results.

To reduce the chance for numerical cancelation, we modify the calculation of the distance so that the number
of subtractions is minimal. However, we still have a problem where the two poses are closer to each other than to
the target.

To solve this issue, we check the difference between the two poses (by the angles extracted from them), if the
difference is under a certain value - we deduce this is an error-bound computation and issue a small result to just
advance the robot towards the target (in the direction ').

4.4 Restarting after bad step
While computing the next step and estimating the model is proven to converge, sometimes a bad step (or an
auxiliary step to compute distance) can cause the robot to lose an angle or view of the target scene or pose. We
introduced a ’Back step’ procedure to the robot: As soon as the robot notices it is out of his way, he “back steps” -
takes a random short step to get out of the current pose and starts looking for a new starting pose (2.3).

Bad position recognition is done by the robot simply not recognizing any matches over a ’good’ level, contra-
dicting the assumption where all poses along the route taken to the target.

By enabling the robot to reset its algorithm run - we enable the algorithm to run smoothly and not ’get stuck’
on a fault.

5 Experimental Test Results
Tests of the implementation were ran on:

• Pioneer Robot (complete model here)

• Axis Web camera

• Laptop running ROS as master node.

15

When running the implementation from any random position in a room, the algorithm converges the robot in 3-5
iterations to ⇠ 40

cm

from the target pose with ’Triangle’ distance approximation method. As written above, from
this point on - the algorithm is diverging, resulting in distancing the robot from the target. When using the ’X-ratio’
distance method, convergence seems to be slower but more efficient in any distance to target, resulting in a much
better end result.

Starting position 1st iteartion 2nd iteration

3rd 4th End - 6 iterations (distance: ⇠ 20

cm

)
Above is a sample run of the algorithm using ’Triangle’ method. Below is the target image taken from the target

pose, and the image taken from the reached pose at end of the algorithm.

Starting position Midway through run - after 2 iterations

16

Target Image End of run captured image

5.1 Measurables
Below are the convergence of the distance to target and difference in orientation through the algorithm’s progress,
by iterations.

Distance to target by iterations �✓ - Difference in orientation
By comparing both distance approximation algorithms, we can see the quicker convergence of ’Triangle’ method

when we are far from the target. However, the ’X-ratio’ method is found more useful in any distance for it is
producing a better and closer end point data. While the ’Triangle’ method is more accurate when given a big
enough difference between poses, the ’X-ratio’ is independent of pose distance to target and giving the same results
wherever it may be.

Also, when close enough to the target pose, ’Triangle’ method diverges as mentioned before, which results can

17

be seen upon distancing itself from the target at later stages of the run.

6 Summary, Open issues and Future work

6.1 Issue: Algorithm failure under a planar scene image
When using the algorithm for Essential matrix approximation, we sometime come across a dominant plane scene.
A dominant plane scene is one where the majority of the image, or more precisely - Image features, reside on the
same plane. These scene usually include a wall (or some), picture etc. In our algorithm, when extracting the image
features and approximating the essential matrix through them, when coming across a dominant plane scene - most
features (and thus inliers of the same model) are on the same plane (e.g. wall) resulting in 2 essential matrices,
both of which are solutions.

Usually, when this occurs, we will receive 2 possible solutions while one has a significant amount of inliers while
the other doesn’t. To resolve this issue, another computation should be made, as mentioned in [1] briefly. The
solution is to take another image from a random pose facing the same scene. While we still receive 2 solutions for
E, the solution regarding the dominant plane will change in accordance to the plane’s normal vector in the new
image. The other solution, the one not influenced by the dominant plane and its normal’s variations, constructs
our “true” essential matrix solution.

In our implementation, we do not overcome this issue, nor implement the aforementioned method to resolve it.
In our test runs we give as much of a non-dominant plane scene as a target, to prevent miscalculations due to this
matter.

6.2 Summary and Future Work
As shown in this project, and the previous work mentioned, Vision based navigation is able to deduce orientation
and distance to a given target by a number of computations using Feature matching and Essential Matrix
approximation and extraction. Once an Essential model is acquired, rotation and translation matrices are easily
recovered and the next robot’s movement is known.

In this project, we implement a model based on previous knowledge of the scene. While the images given can
be different and almost non related, we can always assume Planar movement and Y-axis only rotation, giving
us a better idea of the essential matrix structure, thus having a better and more efficient way of computing the
rotation and translation matrices.

The algorithm shown above constructs an essential matrix approximation using only 2-point correspondence
between two images, a Target image & and a Current position image. By using LS approximation and a linear
equation solution to the problem we can compute the model needed for the navigation process.

By implementing the algorithm and testing its runs, we can see that the algorithm quickly converges to a close
enviroment of the target pose and orientation (T, ✓). However, It is found that in close enviroments, close to the
target pose, the computation starts diverging again away from the target.

In future work we recommend:

1. Solving divergence at target pose.

2. Better elimination of ’bad’ image sources (wrong poses).

3. Qualifier for better matches and features for a more efficient estimation each step.

4. Better and\or more efficient method of distance computing

18

References
[1] Ehud Rivlin Boris Cherevatsky, Ilan Shimshoni. Autonomous navigation within an indoor environment. Tech-

nion.

[2] Ilan Shimshoni Evgeny Smolyar, Ehud Rivlin. Image-based robot navigation in unknown indoor environment.
2003.

[3] I. Shimshoni R. Basri, E. Rivlin. Visual homing: Surfing on the epipoles. International Journal of Computer

Vision, 1999.

19

	Background
	Epipolar Geometry
	Epipolar Point
	Epipolar Line

	Homography
	Essential Matrix
	Essential Matrix in the Planar Model

	Algorithm(s) used
	Introduction
	Program Flow
	Finding a good starting point
	Finding Correspondence
	Estimating the Essential Matrix
	Pure Rotation
	Calculating Distance

	Design and Implementation
	Design Concepts & Modules
	Auto Navigator
	Robot Controller
	Image Capturer & Undistorter
	Epipolar Solver

	Using ROS
	ROSARIA
	Axis Camera

	Challenges
	Eliminating bad images
	Algorithm divergence near target
	Computing distance to target - Triangle method
	Restarting after bad step

	Experimental Test Results
	Measurables

	Summary, Open issues and Future work
	Issue: Algorithm failure under a planar scene image
	Summary and Future Work

