
Ground Control Station for UAV Quadcopter

Project By:
 Ran Glait

 Kfir Nir-Zvi

Supervised By:
 Majd Srour

Introduction
Autonomous Quadcopters are used to different purposes where they are required to navigate

from a starting point to a destination point in its area. Thus, a GCS (Ground Control Station)

should have information about local and target positions of the UAV.

The GCS must perform the following tasks:

1. Defining the mission for the UAV – i.e. sending the flying track to the UAV (waypoints).

2. Monitoring the UAV's status – getting the present position, data of heading, speed etc.

3. Communicating with the UAV – Using ZigBee communication protocol, in order to

enable bidirectional communication between the GCS and the UAV.

4. Provide a GUI – for a comfortable, simple and efficient use of the GCS.

Project’s Goal
Build a GCS in order to control and track an UAV, specifically, a home-built quadcopter.

The GCS should send the mission (a set of waypoints) to the quadcopter, and a start mission
command. From that point, the GCS should keep a connection with the quadcopter in order to
track and monitor it's data and movement. In case of connection lost – the GCS must show an
ERROR message, while the quadcopter lands by itself immediately.

While the UAV is in the air, the GCS should present its position on a map. On the same map, it
should also present the waypoints (as bald points), and the complete track (as a line).

The current GCS is a basic platform that can be extended, depending on the requirements. This
is done by simple operations of adding the needed functions to the platform.

Writing an autonomous algorithm to navigate the UAV, with obstacles avoiding ability.

Figure 1 - Working Process

GUI

The GUI was developed in Qt Creator version 3.0.1, on C++.

The main screen of the GUI is based on a map that shows the current point of the UAV, its

heading, its path, a list of waypoints and several available commands:

1. START MISSION – start the navigation according to the waypoints.

2. Clear All Waypoints – empty the waypoints list, delete the mission.

3. Get Waypoint List – receive the waypoint list that is held in the UAV itself. This is done in

order to compare to the list we sent to it.

4. EMERGENCY – command UAV to halt the mission and land immediately.

5. Remove Marker – delete a specific waypoint from the list and send a signal to the UAV

so that it is removed from its mission.

6. CheckBox – disables or enables (depending on the status) a laser sensor in order to

avoid obstacles.

Figure 2 - GUI

Two additional buttons at the top-left part of the screen:

1. File – has the Quit command.

2. More – includes 3 options:

i. Parameters Display – an auxiliary screen, which includes the data needed for quality

conditions of flight.

For example: number of visible satellites, current GPS data as longitude and latitude,

etc.

Figure 3 - Parameters Display

ii. GPS Calibration – A dialog box that calibrates the GPS by feeding a known local

accurate point.

Figure 4 - GPS Calibration

iii. Add Markers – a dialog box, in which we feed our mission waypoints. It can be done

manually for each point, or from a file that contains a list in a certain format.

Figure 5 - Add Markers Dialog Box

Implementation

The software is divided into several parts which communicate via signals. Those parts run on

different threads paralleled.
The different parts of the software:

1. GUI thread – the main thread of the program. Loads the GUI, creates the communication

thread, and keeps the GUI updated according to the data that is received from the

communication thread (from the UAV). When data is received from the user, the GUI

thread sends a signal to the communication thread with the relevant data, and when a

signal is received from the communication thread (new or updated data from UAV), it

handles the signal and updates the relevant fields.

If for a predefined period of time the GCS does not get any message from the

communication thread, it is assumed that the connection has been lost. Given such a

case, an error message is presented in the GUI.

Figure 6 - Connection Lost

2. Communication thread – The main goal of this thread is to take care of the

communication between the UAV and the GCS. It uses the ZigBee hardware, with the

MavLink communication protocol, which is a unique protocol for UAV's.

On-Board

The quadcopter is composed of several layers, as is described below:

On-Board Algorithm

The Odroid computer is installed on the quadcopter onboard, its goal is to perform the

following algorithmic tasks:

1. Navigation between two points: once a navigation track is accepted by the computer, the

Odroid computer calculates the route of flight between each two points in the route. The

calculations are done separately as follows:

a. Dividing the route into short sub-routes, each 1 meter long, the calculation for

each of them is executed separately.

b. Every sub-route's coordinates are calculated by inserting the current waypoint and

target direction into the known formulas below. Note that the target direction is

calculated only once from the original target and destination points, whereas each

new sub-route is calculated after the execution of the previous sub-route.

cos
360

2
old

x
Latitude Latitude

R




  

sin
360

2 cos()
old

x
Longitude longitude

R Latitude




  

.Altitude Const predefined

Where x is the distance to travel,  is angel from the north and R is radius of the

earth

2. In case an obstacle is detected in front of the quadcopter by the laser sensor at range of 3

meters at most. The Odroid recalculates recursively the route in the following way:

a. Deciding from which direction to bypass the obstacle, according to boundaries that

are predefined: bypass from the direction of the farthest edge of the boundary.

b. Moving 1 meter right or left according to the previous decision.

c. Repeating sections (a) and (b) until the obstacle is no longer detected.

d. Returning to section (1) in order to calculate a new route, the current point is the new

start point, and the target point remains the original one.

Figure 7 - Laser Measure Diagram

Figure 8 - The laser measurment

On-Board Communication
An Arduino computer with built in software is installed on the quadcopter alongside the odroid

computer, its goal is to function as the flight controller.

The two computers (the Arduino and the Odroid) are connected via USB cable, using the

communication protocol Mavlink.

Mavlink is used mostly for communication between a Ground Control Station

(GCS) and unmanned vehicles, and in the inter-communication of the subsystem of the vehicle.

It can be used to transmit the orientation of the vehicle, its GPS location and speed.

When switching from manual control to autonomous control, the Odroid computer takes the

control over the quadcopter, giving commands to the arduino computer, using data from the on-

board algorithm and the GCS commands.

Messages from the Odroid computer to the Arduino computer go through the following steps:

- The Odroid computer generates a serial command.

- The Odroid computer sends the serial command to the Arduino computer.

- The Arduino computer parses the command received into Pulse Width Modulation

(PWM), which is an Arduino-based message structure.

- The Arduino computer executes the command.

Testing and Conclusions

In order to test our algorithm we experiment flight cases in a secured area which was done in

order to avoid damage to people and property.

i. In order to examine the navigation algorithm without obstacles we took the following

steps:

1. We checked the coordinates of sample point using the Arduino computer. The data

was received as previously described, from the Arduino computer, through the

Odroid computer, which sends the data to the GCS from which we can read it.

2. Using the samples we collected in step (1) we assembled a list of waypoints on our

GCS.

3. We commanded the quadcopter to take off manually. Once the quadcopter was

hovering, we switched control to autonomous.

4. We sent the list of waypoints from the GCS to the quadcopter, and pressed the

"START MISSION" button.

5. We evaluated the Quadcopter's flight, comparing it to the waypoints mentioned

above.

Results:

The quadcopter passed the waypoints, being inaccurate by 5-10 meters. This did not

match the expected results, as we had predicted an inaccuracy of up to 30 cm.

After reexamining the algorithm repeating the experiment, we received accuracy no

http://en.wikipedia.org/wiki/Ground_control_station
http://en.wikipedia.org/wiki/Ground_control_station
http://en.wikipedia.org/wiki/Unmanned_vehicle

better than 1-2 meters. We conclude that there is some GPS inaccuracy, and that the

best results were given when the GPS antenna was set away from the different

electronic devices. This might be due to electronic or magnetic fields caused by the

different devices.

ii. The second part of the experiments was to examine the obstacles avoiding algorithm,

this was done as follows:

1. Sections 1-4 were repeated from the first experiment.

2. An obstacle was held high enough in order for it to be in the quadcopter's route.

3. Using the transmission of the laser sensor from the quadcopter we followed and

confirmed the distances correspondence to the actual distances.

Results:

The quadcopter stopped 3 meters before reaching an obstacle. It then bypassed the

obstacle from the right side and continued the flight towards the target. This was all done

according to the algorithm and as expected.

Improvements:

In order to increase navigation accuracy, we have to increase the GPS receiver accuracy. It can

be done simply by buying a better GPS receiver, with better accuracy.

Future work:
Combine the GPS navigation with an image processing algorithm:

At this way, we can navigate with the GPS to the area, but the recognition of an object and the

ability to hover above it with great accuracy will be achieved by a camera and a real time image

recognition and processing algorithm.

