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Introduction 
Most common instruments for obstacle detection on robots are laser sensors and ones based on signals 

broadcasted and received by the robot itself to determine the distance to obstacles around it. This is a 

great manner to avoid obstacles but costly since these sensors are relatively expensive. 

The goal in this project was to come up with an algorithm based on a somewhat cheap accessory one 

can attach to a robot and determine the distance to an obstacle. This accessory is a camera which can be 

found anywhere nowadays from mobile phones to tablets and wearables and standalone cheap cameras 

which can cost no more than $5. 

After attaching a camera to the robot, with every move the robot will take a single frame from the 

camera and feed it to our algorithm which will in turn analyze this frame with the previous one in mind 

and determine the distance between the robot’s current location and the closest obstacle to it. 

We hereby explain the tools and the algorithms we used and developed and lastly present theoretical 

results as well as practical results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tools 
The algorithm was implemented in C++ using Visual Studio 2012 and with the help of OpenCV Library 

version 2.4.9. 

Interfacing with the robot was in an Android application written in Java and sending/receiving data from 

the above C++ code using JNI while the pictures were taken from a Nexus 5’s rear camera and 

downgraded to 640x480 pixels. 

Algorithm 
We implemented the required interface available in VisualAssistedOdometry.h using C++ under 

the class FramesAnalyzer.  

The algorithm was simple and straight forward and consisted of the following steps: 

 

 

 



GoodFeaturesToTrack 
After receiving two frames as input, we run OpenCV’s goodFeaturesToTrack algorithm in order to find 

the best points we should keep track of which will help us calculate the distance each object has moved. 

The algorithm takes 8 arguments: relevant image, an empty vector which it fills with the good points it 

finds, maximal number of corners to find, the quality level, minimum distance in pixels between corners, 

mask, block size which it uses to determine if a point is in fact a corner and a boolean which determines 

whether to use HarrisDetector. 

The parameters we have supplied to each frame’s analysis were: 

The frame itself, an empty vector so it can fill it up, maximum number of corners is 10000, quality level 

of 0.05, minimum distance of 2 pixels, an empty mask, a block size of 7 and true for using 

HarrisDetector. 

The quality level is used in the following manner: the highest measurement of Harris’s function response 

is multiplied by this value, in our case 0.05, and all the points which have a quality level less than the 

calculated value are rejected. This is one of the screening processes we use to ignore malfunctioning 

points. 

Minimum distance is in fact the Euclidean distance between two points; if the value is less than 2 pixels 

then the points are ignored since they’re considered the same. 

Block size is the size of a block to use in computing the derivative. 

Few of results of this algorithm: 

  

  
 



CornerSubPix 
The results of GoodFeaturesToTrack, the two vectors of corners, are passed to a follow up function 

called cornerSubPix. Its main purpose is to refine the corners’ locations in order to get more accurate 

results and avoiding hiccups due to low image resolution. Its results give us an accuracy of up to 3 digits 

after the decimal point. 

The algorithm is an iterative one which we terminate after 30 iterations or when the corner position 

moves by less than 0.01. 

Here are results of before and after applying the algorithm on the same frame. 

Before After 

  

 

 

 

 

 

 

 

 

 

 

 
 

 



CalcOpticalFlowPyrLK 
The upgraded corners from CornerSubPix are passed to CalcOpticalFlowPyrLK function in order to see 

each corner from one vector to where it was mapped in the second vector, meaning each corner from 

one frame to the other. 

As output, it returns both vectors we fed to it along with a status vector and an error vector which 

indicate how accurate the match was, if at all. 

This algorithm is also an iterative one which we terminate after 20 iterations or when the search 

window moves by less than 0.3. 

Here are examples of running the algorithm on 4 sets of 2 frames (i.e each picture here was made out of 

2 frames). 

The drawn lines represent where each corner has moved from the first frame to the second. 

  

  
 

 

 

 

 



Evaluate track point 
In order to find the point which the robot is moving towards, we took each two matching points and 

calculated the line’s equation which passes through them. Eventually we intersected all the lines 

together to find the initial center point. 

In a second pass, we intersected the lines once again but rejected lines whose intersection point was 4-

6% (in each dimension) away from the initial center point. 

The second pass would incur in results better in at least 2 pixels in each dimension and this was critical 

considering the low resolution of the images. 

We chose this point to assist us in calculating the distance later on since this is the only point which does 

not change its position between two consecutive frames. 

 

Here we see 4 different sets of images where each set is composed of 2 frames. 

The continuation of the vectors from CalcOpticalFlowPyrLK drawn to give an estimate where the track 

point is located. 

  

  
 

 

 



The black point is the initial intersection point whereas the white point is the updated one as described 

above. 

  

  
 

 

 

 

 

 

 

 

 

 

 



Calculate distances and correct odometry 

Distance calculation 
Using simple geometry, we can conclude the following formula to calculate a distance of an object: 

     
  

     
 

Where S is the step size,    is the object’s size in pixels in the first frame,    is the object’s size in pixels 

in the second frame and    is the object’s distance from the point where the first frame was taken. 

This formula came from the pinhole projection formula like so: 

 

 
 

 

 
 where x is the size of the object on the sensor, f is the focal length, X is the size of the object and d 

is the distance from nodal point to the object.  

If we write this formula for the two frames, using subindex 1 for the first frame and subindex 2 for the 

second frame, we get the following, given X and f do not change for the frames: 

  

 
 

 

  
 

  

 
 

 

  
 

If we consider         then after reordering the equation such that the constants are in one side 

and the variables in the other, we get: 

                    

             

                 

      
  

     
 

This forces us to pay careful attention to images from a large distance as the difference between 

         can be very small and thus we divide by a small number and cause numerical errors which 

we’ll address in our analysis later on. 

In our implementation, we took a constant point – namely the track point, explained above – and 

calculated each corner’s distance relatively to it in pixels. Therefore, a corner which moved between the 

frames “creates” two objects         , where    is (defined by) the distance between the corner in the 

first frame and the track point, and    is the distance between the corner in the second frame and the 

same track point (which does not move between the frames). 

In this way, since the track point stays fixed, its distance to the nodal point is not determined, so we can 

choose it and set it as equal to each corner’s distance to the nodal point, and so we are able to get the 

pure distance to these corners without being dependent on any other specific corners. 

 

As it stands, the results from this algorithm were not sufficient as we shall demonstrate in the 

Theoretical results section later on, and so we had to improve it. 



Odometry correction 

In this section we shall explain how we can calculate the improved odometry step size per move and 

thus achieve a more accurate estimate for the distance from an obstacle per move. 

This analysis is relevant only for theoretical approximation since it depends on having an average for the 

odometry step size. 

Using the above mentioned equation of       
  

     
 and if we denote    

  

       
, where         

were calculated from the frame’s analysis as explained before, we can write: 

            
  

  
  

                               

      
    

    
 

     

    
  

 
           

    
     

       

    
   

       
    

    
   

      

    
        

    

    

   

   

 

               
        

   
   

 
  

         
    
    

   
       

   

 
    

    
    
    

   
   

   
   

 
                            

 

Thus, by knowing the average odometry step size for   moves, we can get the value of    and afterward 

calculate the value of every                       depending on a realistic step size for the move 

itself and not an average one which depends on all the other moves as well. 

 

 

 

 

 

 

 

 



Theoretical results 
In order to test the algorithm’s performance we ran several simulations on the provided “Calibration” 

data set and measured the goodness of the algorithm by the quality of the graph and the trend line. 

In the beginning, we assumed each step’s size was the given encoder step approximation (8.32cm) and 

ran the algorithm described in Distance calculation section. 

As stated earlier, the results were far from accurate as we can see in the graph below which has a lot of 

inconsistencies in its slope: 

Frame1 Frame2 Distance  Frame1 Frame2 Distance 

0000 0001  0017 0018 187 

0001 0002 372 0018 0019 186 

0002 0003 165 0019 0019a 270 

0003 0004 397 0019a 0019b 190 

0004 0005  0019b 0019c 496 

0005 0006 249 0019c 0019d 158 

0006 0007 267 0019d 0019e 228 

0007 0008 411 0019e 0019f 297 

0008 0009 227 0019f 0020 138 

0009 0009a 409 0020 0021 179 

0009a 0009b 281 0021 0022 139 

0009b 0009c 213 0022 0023 177 

0009c 0009d 706 0023 0024 128 

0009d 0009e 198 0024 0025 144 

0009e 0009f 387 0025 0026 131 

0009f 0010 276 0026 0027 99 

0010 0011  0027 0028 112 

0011 0012 241 0028 0029 98 

0012 0013 241 0029 0029a 89 

0013 0014 207 0029a 0029b 98 

0014 0015 181 0029b 0029c 68 

0015 0016 270 0029c 0029d 66 

0016 0017 301     
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Later on we turned to the improved algorithm described in Odometry correction section, where n is the 

number of transitions between frames (45 in this dataset) and average odometry step size was set to be 

the encoder step approximation (8.32). 

We see an outstanding improvement in the results as can be seen in the graph below: 

Frame1 Frame2 Distance  Frame1 Frame2 Distance 

0000 0001  0017 0018 201.732 

0001 0002  0018 0019 192.785 

0002 0003 404.016 0019 0019a 184.201 

0003 0004 379.114 0019a 0019b 177.971 

0004 0005 371.06 0019b 0019c 170.108 

0005 0006  0019c 0019d 167.256 

0006 0007 356.393 0019d 0019e 158.465 

0007 0008 344.937 0019e 0019f 151.724 

0008 0009 337.455 0019f 0020 146.992 

0009 0009a 324.775 0020 0021 138.173 

0009a 0009b 311.035 0021 0022 131.77 

0009b 0009c 301.831 0022 0023 123.926 

0009c 0009d 289.823 0023 0024 118.114 

0009d 0009e 285.844 0024 0025 110.466 

0009e 0009f 273.114 0025 0026 104.046 

0009f 0010 267.055 0026 0027 97.4389 

0010 0011 259.007 0027 0028 89.2522 

0011 0012  0028 0029 82.627 

0012 0013 242.925 0029 0029a 75.6615 

0013 0014 234.376 0029a 0029b 68.6109 

0014 0015 224.882 0029b 0029c 62.8302 

0015 0016 214.574 0029c 0029d 55.1711 

0016 0017 207.973     

 
 

 

y = -7.9092x + 400.29 0 

100 

200 

300 

400 

500 

600 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 

D
is

ta
n

ce
 f

ro
m

 o
b

st
ac

le
 in

 c
m

 

Step number 

Odometry correction 

Truth 

Calculated distance 

Linear (Calculated 
distance) 



Lastly, we ran a simulation on reduced input which is closer to the obstacle to see how the algorithm 

behaves with smaller distances and received even better results! 

Frame1 Frame2 Distance  
 
 
 
 
 
 
 
 

Frame1 Frame2 Distance 

0012 0013 280.379 0020 0021 159.476 

0013 0014 270.512 0021 0022 152.086 

0014 0015 259.554 0022 0023 143.033 

0015 0016 247.657 0023 0024 136.325 

0016 0017 240.037 0024 0025 127.498 

0017 0018 232.835 0025 0026 120.087 

0018 0019 222.509 0026 0027 112.462 

0019 0019a 212.6 0027 0028 103.013 

0019a 0019b 205.411 0028 0029 95.3662 

0019b 0019c 196.335 0029 0029a 87.3268 

0019c 0019d 193.043 0029a 0029b 79.1892 

0019d 0019e 182.897 0029b 0029c 72.5173 

0019e 0019f 175.117 0029c 0029d 63.6773 

0019f 0020 169.655  
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Further attempts of improvement led us to use the given step size (namely S in the above equations) for 

the first few steps and after that to start improving it and using the updated value for the distance 

calculation. 

In the table below we display the calculated distances after multiplying with the Total average of all 

steps so far versus multiplying by the average until each step. 

 
Naïve 

multiplied by 
8.32 

 Multiplied by 
relevant average 

 Best out of two worlds  Multiplied by final  
average 

332.8616    332.8616  414.3726 

324.5416  190.669  324.5416  404.0152 

304.5386  218.4739  304.5386  379.114 

298.069  266.2336  298.069  371.0601 

286.287  256.2238  286.287  356.393 

277.0843  261.1759  277.0843  344.9366 

271.0748  250.6858  271.0748  337.4555 

260.8886  235.3359  260.8886  324.7749 

249.8513  229.9427  249.8513  311.0348 

242.4581  221.7877  242.4581  301.8312 

232.8119  225.1316  232.8119  289.8228 

229.6154  218.8659  229.6154  285.8435 

219.3892  215.9431  219.3892  273.1132 

214.5229  214.5159  214.5229  267.0552 

208.0574  213.6737  213.6737  259.0065 

195.1398  202.1177  202.1177  242.9256 

188.2724  195.525  195.525  234.3766 

180.6455  187.2905  187.2905  224.8819 

172.3654  181.6392  181.6392  214.5743 

167.0623  179.0213  179.0213  207.9724 

162.0495  174.2131  174.2131  201.7321 

154.8627  167.2461  167.2461  192.7854 

147.967  162.071  162.071  184.2012 

142.9626  157.6104  157.6104  177.9712 

136.646  154.6353  154.6353  170.1079 

134.3547  152.2575  152.2575  167.2554 

127.2935  145.5728  145.5728  158.4651 

121.8788  141.6348  141.6348  151.7245 

118.0774  137.2637  137.2637  146.9922 

110.993  130.1725  130.1725  138.1729 

105.8495  124.5623  124.5623  131.77 

99.5488  118.3299  118.3299  123.9263 

94.87962  113.1753  113.1753  118.1137 

88.73696  106.6198  106.6198  110.4668 

83.57856  101.0597  101.0597  104.0453 

78.27173  94.75301  94.75301  97.4389 

71.69544  87.29781  87.29781  89.2522 

66.37347  81.18464  81.18464  82.62699 

60.7781  74.64529  74.64529  75.66143 

55.11451  68.20023  68.20023  68.61094 

50.47087  62.57781  62.57781  62.83016 

44.31839  55.17107  55.17107  55.17107 

The green marked rows in the first two columns represent better values than their counterpart in red 

which means they are closer to the wanted values which are represented in yellow. 

The third column is our output which combines the first two. 



 

 

 

We notice in all graphs that when we are closer to the obstacle we get more accurate results. 
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Dependency on initial step size 
By providing a different average encoder step size, we receive the following graph which represent the 

actual average step size value after 45 steps. 

 

 

We notice couple of things: First of all the definite average is usually lower than the provided average 

and that’s probably due to irregularity in the pictures such as rotations and not using the reset function, 

second of all it’s a semi-linear graph and that’s due to the fact our algorithm is based on multiplication 

and therefore when you double the provided average encoder step size, the total average will also be 

doubled, and lastly we do not see any convergence and that’s because our algorithm already tries to 

match the step size to the provided average step size. 
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Installation on a live robot and results 
When finally arriving to integrate the image analysis and processing code with the robot, we started 

facing real-world problems such as drift and hardware issues with the robot’s encoders which affected 

its behavior and compliance with our commands. 

Such issues can be noticed when rotating the robot by giving its encoders opposite values yet the wheels 

don’t turn in the same speed, this means the robot’s rotation wasn’t always in the same size despite 

giving it the same parameters and the solution to this problem was to provide it with a constant speed 

over a fixed period of time which resulted in a relatively constant rotation angle eventually. Yet, this 

solution caused another problem; the robot’s encoders were in incomplete circle state, which resulted 

in relatively short and unpredictable first forward step after the rotation. This problem is unsolvable 

since we don’t have direct access to each encoder separately in order to modify it and complete the 

circle. 

In order to deal with (few) possible unwanted rotations caused by image analysis hiccups, in case the 

reported distance is below the minimal distance threshold – but not critical –  we let the robot move 

forward in safe mode, such that every following distance-too-close report will result in immediate 

rotation. 

We use the following pseudo-code: 

if(dist < 75) 

 Enter safe mode  

if(dist <= 25) 

 Rotate 

if(in safe mode) 

 if(dist >= 55) 

  Move forward 

 if(dist >= 75) 

  Exit safe mode 

 if(dist < 55) 

  Rotate 

//75 – minimal distance threshold 

//55 - distance-too-close 

//25 - critical 

 

Sample run in the table in the next page. 

 

 

 

 

 

 

 

 



Step number Distance If statement  Step number Distance If statement 

0 Start   40 61.86887 25<dist<75 

1 Mismatch   41 54.91204  

2 Mismatch   42 Rotate  

3 114.009   43 69.40255 25<dist<75 

4 85.74315   44 43.79698  

5 78.42592   45 Rotate  

6 75.06543   46 501.7636  

7 69.20378 25<dist<75  47 362.4899  

8 61.56432 25<dist<75  48 289.064  

9 25.31468   49 244.7373  

10 Rotate   50 200.835  

11 93.41955   51 168.0163  

12 80.11607   52 140.5826  

13 68.71044 25<dist<75  53 112.0302  

14 56.69225 25<dist<75  54 89.17937  

15 46.32505   55 66.37161 25<dist<75 

16 Rotate   56 47.54035  

17 53.7094 25<dist<75  57 Rotate  

18 23.59244 dist<25  58 45.23246 25<dist<75 

19 Rotate   59 33.81655  

20 47.02141 25<dist<75  60 Rotate  

21 37.87338   61 112.7145  

22 Rotate   62 96.65104  

23 75.69654   63 83.25559  

24 63.37202 25<dist<75  64 66.07921 25<dist<75 

25 55.0888 25<dist<75  65 52.95801  

26 45.83493   66 Rotate  

27 Rotate   67 75.224  

28 42.85822 25<dist<75  68 51.27864 25<dist<75 

29 33.74571   69 51.27864  

30 Rotate      

31 57.69447 25<dist<75     

32 47.89338      

33 Rotate      

34 53.06975 25<dist<75     

35 45.12167      

36 Rotate      

37 101.3752      

38 89.00514      

39 78.29432      

 

 

 



Conclusion 
Camera’s prices are falling more rapidly than any other sensor (such as lasers) despite them being just as 

rich (in data), if not richer, than normal sensors even in a monocular vision system. 

This project has described a system capable of estimating a robot’s distance from its closest obstacle 

while taking into account many variables such as low resolution images, robot’s drift and encoders’ 

issues. 

This system is easily accessible to everyone when the only requirements are a robot and a camera, even 

from a smart-phone.  

 

 

 

Future work 
As we saw there have been a lot of irregularities in the steps made between the frames from the dataset 

which could easily affect the algorithm. It will be nice if we had frames taken in specific step sizes and 

angle and develop the algorithm to detect whether the obstacle is in fact on the right side or left side of 

the robot and rotate him accordingly. With that in mind, we can develop it further and implement some 

of the Bug algorithms or map a room, just as robots usually do with SONAR and LIDAR devices. 

It will also be interesting to see how low the images’ resolutions can be and still be able to detect an 

obstacle. 
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