

Monocular Vision Assisted Odometry
Project for Center and Laboratory for Intelligent Systems

Giorgio Tabarani and Christian Galinski

April 2015

Summary of project in combination of wheel encoders odometry and vision in order
to both improve the odometry accuracy, and to detect obstacles

Contents
Introduction .. 3

Tools .. 4

Algorithm .. 4

GoodFeaturesToTrack ... 5

CornerSubPix ... 6

CalcOpticalFlowPyrLK .. 7

Evaluate track point .. 8

Calculate distances and correct odometry ... 10

Distance calculation .. 10

Odometry correction .. 11

Theoretical results .. 12

Dependency on initial step size .. 17

Installation on a live robot and results ... 18

Conclusion ... 20

Future work ... 20

Bibliography .. 21

Introduction
Most common instruments for obstacle detection on robots are laser sensors and ones based on signals

broadcasted and received by the robot itself to determine the distance to obstacles around it. This is a

great manner to avoid obstacles but costly since these sensors are relatively expensive.

The goal in this project was to come up with an algorithm based on a somewhat cheap accessory one

can attach to a robot and determine the distance to an obstacle. This accessory is a camera which can be

found anywhere nowadays from mobile phones to tablets and wearables and standalone cheap cameras

which can cost no more than $5.

After attaching a camera to the robot, with every move the robot will take a single frame from the

camera and feed it to our algorithm which will in turn analyze this frame with the previous one in mind

and determine the distance between the robot’s current location and the closest obstacle to it.

We hereby explain the tools and the algorithms we used and developed and lastly present theoretical

results as well as practical results.

Tools
The algorithm was implemented in C++ using Visual Studio 2012 and with the help of OpenCV Library

version 2.4.9.

Interfacing with the robot was in an Android application written in Java and sending/receiving data from

the above C++ code using JNI while the pictures were taken from a Nexus 5’s rear camera and

downgraded to 640x480 pixels.

Algorithm
We implemented the required interface available in VisualAssistedOdometry.h using C++ under

the class FramesAnalyzer.

The algorithm was simple and straight forward and consisted of the following steps:

GoodFeaturesToTrack
After receiving two frames as input, we run OpenCV’s goodFeaturesToTrack algorithm in order to find

the best points we should keep track of which will help us calculate the distance each object has moved.

The algorithm takes 8 arguments: relevant image, an empty vector which it fills with the good points it

finds, maximal number of corners to find, the quality level, minimum distance in pixels between corners,

mask, block size which it uses to determine if a point is in fact a corner and a boolean which determines

whether to use HarrisDetector.

The parameters we have supplied to each frame’s analysis were:

The frame itself, an empty vector so it can fill it up, maximum number of corners is 10000, quality level

of 0.05, minimum distance of 2 pixels, an empty mask, a block size of 7 and true for using

HarrisDetector.

The quality level is used in the following manner: the highest measurement of Harris’s function response

is multiplied by this value, in our case 0.05, and all the points which have a quality level less than the

calculated value are rejected. This is one of the screening processes we use to ignore malfunctioning

points.

Minimum distance is in fact the Euclidean distance between two points; if the value is less than 2 pixels

then the points are ignored since they’re considered the same.

Block size is the size of a block to use in computing the derivative.

Few of results of this algorithm:

CornerSubPix
The results of GoodFeaturesToTrack, the two vectors of corners, are passed to a follow up function

called cornerSubPix. Its main purpose is to refine the corners’ locations in order to get more accurate

results and avoiding hiccups due to low image resolution. Its results give us an accuracy of up to 3 digits

after the decimal point.

The algorithm is an iterative one which we terminate after 30 iterations or when the corner position

moves by less than 0.01.

Here are results of before and after applying the algorithm on the same frame.

Before After

CalcOpticalFlowPyrLK
The upgraded corners from CornerSubPix are passed to CalcOpticalFlowPyrLK function in order to see

each corner from one vector to where it was mapped in the second vector, meaning each corner from

one frame to the other.

As output, it returns both vectors we fed to it along with a status vector and an error vector which

indicate how accurate the match was, if at all.

This algorithm is also an iterative one which we terminate after 20 iterations or when the search

window moves by less than 0.3.

Here are examples of running the algorithm on 4 sets of 2 frames (i.e each picture here was made out of

2 frames).

The drawn lines represent where each corner has moved from the first frame to the second.

Evaluate track point
In order to find the point which the robot is moving towards, we took each two matching points and

calculated the line’s equation which passes through them. Eventually we intersected all the lines

together to find the initial center point.

In a second pass, we intersected the lines once again but rejected lines whose intersection point was 4-

6% (in each dimension) away from the initial center point.

The second pass would incur in results better in at least 2 pixels in each dimension and this was critical

considering the low resolution of the images.

We chose this point to assist us in calculating the distance later on since this is the only point which does

not change its position between two consecutive frames.

Here we see 4 different sets of images where each set is composed of 2 frames.

The continuation of the vectors from CalcOpticalFlowPyrLK drawn to give an estimate where the track

point is located.

The black point is the initial intersection point whereas the white point is the updated one as described

above.

Calculate distances and correct odometry

Distance calculation
Using simple geometry, we can conclude the following formula to calculate a distance of an object:

Where S is the step size, is the object’s size in pixels in the first frame, is the object’s size in pixels

in the second frame and is the object’s distance from the point where the first frame was taken.

This formula came from the pinhole projection formula like so:

 where x is the size of the object on the sensor, f is the focal length, X is the size of the object and d

is the distance from nodal point to the object.

If we write this formula for the two frames, using subindex 1 for the first frame and subindex 2 for the

second frame, we get the following, given X and f do not change for the frames:

If we consider then after reordering the equation such that the constants are in one side

and the variables in the other, we get:

This forces us to pay careful attention to images from a large distance as the difference between

 can be very small and thus we divide by a small number and cause numerical errors which

we’ll address in our analysis later on.

In our implementation, we took a constant point – namely the track point, explained above – and

calculated each corner’s distance relatively to it in pixels. Therefore, a corner which moved between the

frames “creates” two objects , where is (defined by) the distance between the corner in the

first frame and the track point, and is the distance between the corner in the second frame and the

same track point (which does not move between the frames).

In this way, since the track point stays fixed, its distance to the nodal point is not determined, so we can

choose it and set it as equal to each corner’s distance to the nodal point, and so we are able to get the

pure distance to these corners without being dependent on any other specific corners.

As it stands, the results from this algorithm were not sufficient as we shall demonstrate in the

Theoretical results section later on, and so we had to improve it.

Odometry correction

In this section we shall explain how we can calculate the improved odometry step size per move and

thus achieve a more accurate estimate for the distance from an obstacle per move.

This analysis is relevant only for theoretical approximation since it depends on having an average for the

odometry step size.

Using the above mentioned equation of

 and if we denote

, where

were calculated from the frame’s analysis as explained before, we can write:

Thus, by knowing the average odometry step size for moves, we can get the value of and afterward

calculate the value of every depending on a realistic step size for the move

itself and not an average one which depends on all the other moves as well.

Theoretical results
In order to test the algorithm’s performance we ran several simulations on the provided “Calibration”

data set and measured the goodness of the algorithm by the quality of the graph and the trend line.

In the beginning, we assumed each step’s size was the given encoder step approximation (8.32cm) and

ran the algorithm described in Distance calculation section.

As stated earlier, the results were far from accurate as we can see in the graph below which has a lot of

inconsistencies in its slope:

Frame1 Frame2 Distance Frame1 Frame2 Distance

0000 0001 0017 0018 187

0001 0002 372 0018 0019 186

0002 0003 165 0019 0019a 270

0003 0004 397 0019a 0019b 190

0004 0005 0019b 0019c 496

0005 0006 249 0019c 0019d 158

0006 0007 267 0019d 0019e 228

0007 0008 411 0019e 0019f 297

0008 0009 227 0019f 0020 138

0009 0009a 409 0020 0021 179

0009a 0009b 281 0021 0022 139

0009b 0009c 213 0022 0023 177

0009c 0009d 706 0023 0024 128

0009d 0009e 198 0024 0025 144

0009e 0009f 387 0025 0026 131

0009f 0010 276 0026 0027 99

0010 0011 0027 0028 112

0011 0012 241 0028 0029 98

0012 0013 241 0029 0029a 89

0013 0014 207 0029a 0029b 98

0014 0015 181 0029b 0029c 68

0015 0016 270 0029c 0029d 66

0016 0017 301

y = -6.2404x + 380.77
0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

D
is

ta
n

ce
 f

ro
m

 o
b

st
ac

le
 in

 c
m

Step number

Naïve algorithm

Truth

Calculated distance

Linear (Calculated
distance)

Later on we turned to the improved algorithm described in Odometry correction section, where n is the

number of transitions between frames (45 in this dataset) and average odometry step size was set to be

the encoder step approximation (8.32).

We see an outstanding improvement in the results as can be seen in the graph below:

Frame1 Frame2 Distance Frame1 Frame2 Distance

0000 0001 0017 0018 201.732

0001 0002 0018 0019 192.785

0002 0003 404.016 0019 0019a 184.201

0003 0004 379.114 0019a 0019b 177.971

0004 0005 371.06 0019b 0019c 170.108

0005 0006 0019c 0019d 167.256

0006 0007 356.393 0019d 0019e 158.465

0007 0008 344.937 0019e 0019f 151.724

0008 0009 337.455 0019f 0020 146.992

0009 0009a 324.775 0020 0021 138.173

0009a 0009b 311.035 0021 0022 131.77

0009b 0009c 301.831 0022 0023 123.926

0009c 0009d 289.823 0023 0024 118.114

0009d 0009e 285.844 0024 0025 110.466

0009e 0009f 273.114 0025 0026 104.046

0009f 0010 267.055 0026 0027 97.4389

0010 0011 259.007 0027 0028 89.2522

0011 0012 0028 0029 82.627

0012 0013 242.925 0029 0029a 75.6615

0013 0014 234.376 0029a 0029b 68.6109

0014 0015 224.882 0029b 0029c 62.8302

0015 0016 214.574 0029c 0029d 55.1711

0016 0017 207.973

y = -7.9092x + 400.29 0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

D
is

ta
n

ce
 f

ro
m

 o
b

st
ac

le
 in

 c
m

Step number

Odometry correction

Truth

Calculated distance

Linear (Calculated
distance)

Lastly, we ran a simulation on reduced input which is closer to the obstacle to see how the algorithm

behaves with smaller distances and received even better results!

Frame1 Frame2 Distance

Frame1 Frame2 Distance

0012 0013 280.379 0020 0021 159.476

0013 0014 270.512 0021 0022 152.086

0014 0015 259.554 0022 0023 143.033

0015 0016 247.657 0023 0024 136.325

0016 0017 240.037 0024 0025 127.498

0017 0018 232.835 0025 0026 120.087

0018 0019 222.509 0026 0027 112.462

0019 0019a 212.6 0027 0028 103.013

0019a 0019b 205.411 0028 0029 95.3662

0019b 0019c 196.335 0029 0029a 87.3268

0019c 0019d 193.043 0029a 0029b 79.1892

0019d 0019e 182.897 0029b 0029c 72.5173

0019e 0019f 175.117 0029c 0029d 63.6773

0019f 0020 169.655

y = -8.1217x + 428.06 0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

D
is

ta
n

ce
 f

ro
m

 o
b

st
ac

le
 in

 c
m

Step number

Reduced input

Truth

Calculated Distance

Linear (Calculated
Distance)

Further attempts of improvement led us to use the given step size (namely S in the above equations) for

the first few steps and after that to start improving it and using the updated value for the distance

calculation.

In the table below we display the calculated distances after multiplying with the Total average of all

steps so far versus multiplying by the average until each step.

Naïve

multiplied by
8.32

 Multiplied by
relevant average

 Best out of two worlds Multiplied by final
average

332.8616 332.8616 414.3726

324.5416 190.669 324.5416 404.0152

304.5386 218.4739 304.5386 379.114

298.069 266.2336 298.069 371.0601

286.287 256.2238 286.287 356.393

277.0843 261.1759 277.0843 344.9366

271.0748 250.6858 271.0748 337.4555

260.8886 235.3359 260.8886 324.7749

249.8513 229.9427 249.8513 311.0348

242.4581 221.7877 242.4581 301.8312

232.8119 225.1316 232.8119 289.8228

229.6154 218.8659 229.6154 285.8435

219.3892 215.9431 219.3892 273.1132

214.5229 214.5159 214.5229 267.0552

208.0574 213.6737 213.6737 259.0065

195.1398 202.1177 202.1177 242.9256

188.2724 195.525 195.525 234.3766

180.6455 187.2905 187.2905 224.8819

172.3654 181.6392 181.6392 214.5743

167.0623 179.0213 179.0213 207.9724

162.0495 174.2131 174.2131 201.7321

154.8627 167.2461 167.2461 192.7854

147.967 162.071 162.071 184.2012

142.9626 157.6104 157.6104 177.9712

136.646 154.6353 154.6353 170.1079

134.3547 152.2575 152.2575 167.2554

127.2935 145.5728 145.5728 158.4651

121.8788 141.6348 141.6348 151.7245

118.0774 137.2637 137.2637 146.9922

110.993 130.1725 130.1725 138.1729

105.8495 124.5623 124.5623 131.77

99.5488 118.3299 118.3299 123.9263

94.87962 113.1753 113.1753 118.1137

88.73696 106.6198 106.6198 110.4668

83.57856 101.0597 101.0597 104.0453

78.27173 94.75301 94.75301 97.4389

71.69544 87.29781 87.29781 89.2522

66.37347 81.18464 81.18464 82.62699

60.7781 74.64529 74.64529 75.66143

55.11451 68.20023 68.20023 68.61094

50.47087 62.57781 62.57781 62.83016

44.31839 55.17107 55.17107 55.17107

The green marked rows in the first two columns represent better values than their counterpart in red

which means they are closer to the wanted values which are represented in yellow.

The third column is our output which combines the first two.

We notice in all graphs that when we are closer to the obstacle we get more accurate results.

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

D
is

ta
n

ce
 f

ro
m

 o
b

st
ac

le
 in

 c
m

Step number

Combined effort

Truth

Calculated distance

By 8.32

By relevant average

Dependency on initial step size
By providing a different average encoder step size, we receive the following graph which represent the

actual average step size value after 45 steps.

We notice couple of things: First of all the definite average is usually lower than the provided average

and that’s probably due to irregularity in the pictures such as rotations and not using the reset function,

second of all it’s a semi-linear graph and that’s due to the fact our algorithm is based on multiplication

and therefore when you double the provided average encoder step size, the total average will also be

doubled, and lastly we do not see any convergence and that’s because our algorithm already tries to

match the step size to the provided average step size.

0

5

10

15

20

25

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 s
te

p
 s

iz
e

 a
ft

e
r

4
5

 s
te

p
s

Provided average encoder step size

Provided average
encoder step size

Average step size over
45 steps

Installation on a live robot and results
When finally arriving to integrate the image analysis and processing code with the robot, we started

facing real-world problems such as drift and hardware issues with the robot’s encoders which affected

its behavior and compliance with our commands.

Such issues can be noticed when rotating the robot by giving its encoders opposite values yet the wheels

don’t turn in the same speed, this means the robot’s rotation wasn’t always in the same size despite

giving it the same parameters and the solution to this problem was to provide it with a constant speed

over a fixed period of time which resulted in a relatively constant rotation angle eventually. Yet, this

solution caused another problem; the robot’s encoders were in incomplete circle state, which resulted

in relatively short and unpredictable first forward step after the rotation. This problem is unsolvable

since we don’t have direct access to each encoder separately in order to modify it and complete the

circle.

In order to deal with (few) possible unwanted rotations caused by image analysis hiccups, in case the

reported distance is below the minimal distance threshold – but not critical – we let the robot move

forward in safe mode, such that every following distance-too-close report will result in immediate

rotation.

We use the following pseudo-code:

if(dist < 75)

 Enter safe mode

if(dist <= 25)

 Rotate

if(in safe mode)

 if(dist >= 55)

 Move forward

 if(dist >= 75)

 Exit safe mode

 if(dist < 55)

 Rotate

//75 – minimal distance threshold

//55 - distance-too-close

//25 - critical

Sample run in the table in the next page.

Step number Distance If statement Step number Distance If statement

0 Start 40 61.86887 25<dist<75

1 Mismatch 41 54.91204

2 Mismatch 42 Rotate

3 114.009 43 69.40255 25<dist<75

4 85.74315 44 43.79698

5 78.42592 45 Rotate

6 75.06543 46 501.7636

7 69.20378 25<dist<75 47 362.4899

8 61.56432 25<dist<75 48 289.064

9 25.31468 49 244.7373

10 Rotate 50 200.835

11 93.41955 51 168.0163

12 80.11607 52 140.5826

13 68.71044 25<dist<75 53 112.0302

14 56.69225 25<dist<75 54 89.17937

15 46.32505 55 66.37161 25<dist<75

16 Rotate 56 47.54035

17 53.7094 25<dist<75 57 Rotate

18 23.59244 dist<25 58 45.23246 25<dist<75

19 Rotate 59 33.81655

20 47.02141 25<dist<75 60 Rotate

21 37.87338 61 112.7145

22 Rotate 62 96.65104

23 75.69654 63 83.25559

24 63.37202 25<dist<75 64 66.07921 25<dist<75

25 55.0888 25<dist<75 65 52.95801

26 45.83493 66 Rotate

27 Rotate 67 75.224

28 42.85822 25<dist<75 68 51.27864 25<dist<75

29 33.74571 69 51.27864

30 Rotate

31 57.69447 25<dist<75

32 47.89338

33 Rotate

34 53.06975 25<dist<75

35 45.12167

36 Rotate

37 101.3752

38 89.00514

39 78.29432

Conclusion
Camera’s prices are falling more rapidly than any other sensor (such as lasers) despite them being just as

rich (in data), if not richer, than normal sensors even in a monocular vision system.

This project has described a system capable of estimating a robot’s distance from its closest obstacle

while taking into account many variables such as low resolution images, robot’s drift and encoders’

issues.

This system is easily accessible to everyone when the only requirements are a robot and a camera, even

from a smart-phone.

Future work
As we saw there have been a lot of irregularities in the steps made between the frames from the dataset

which could easily affect the algorithm. It will be nice if we had frames taken in specific step sizes and

angle and develop the algorithm to detect whether the obstacle is in fact on the right side or left side of

the robot and rotate him accordingly. With that in mind, we can develop it further and implement some

of the Bug algorithms or map a room, just as robots usually do with SONAR and LIDAR devices.

It will also be interesting to see how low the images’ resolutions can be and still be able to detect an

obstacle.

Bibliography
GoodFeaturesToTrack - Shi and C. Tomasi. Good Features to Track. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 593-600, June 1994.

HarrisDetector - C. Harris and M. Stephens (1988). "A combined corner and edge detector". Proceedings of the 4th Alvey Vision Conference: pages 147—151

CornerSubPix - http://docs.opencv.org/modules/imgproc/doc/feature_detection.html#cornersubpix

CalcOpticalFlowPyrLK - J. Y. Bouguet, (2001) . Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation, 5

OpenCV - opencv.org

