
Optimally Coverage of Unknown Indoor Environment
for a Mobile Robot Using Android Application

Submitted by: Nadine Toledano, Ori Ziskind

Advisor: Majd Srour
Intelligent System Laboratory, CS, Technion

January 19, 2015

Abstract
 This project objective is to develop an Android application which implements the STC on-line
algorithm as developed and shown in [1]. Our project’s goal was to implement an optimal
navigation application of unknown bounded planar, on an Android device along with solving the
problem of controlling a mobile robot in real-time. We achieved those challenges by utilization of
the device’s camera, for getting input on the neighborhood environment, and avoiding obstacles.
As well, we used a IOIO platform, which is attached to the robot, to manage and control the robot
movement. We produced an Android application thats implements the on-line STC algorithm,
and communicate with the IOIO board, sending it movement commands accordingly.

1 Background

1.1 STC- Spanning Tree Covering
 A paper by Yoav Gabriely and Elon Rimon, from the Department of Mechanical Engineering,
Technion, Israel Institute of Technology, Israel [1]. This paper offers an algorithm for solving the
problem of covering a continuous planar area by a square-shaped mobile robot. The algorithm,
subdivides the work-area into disjoint cells corresponding to the square-shaped robot, then
follows a spanning tree of the graph induced by the cells, while covering every point precisely
once.
The paper suggests three versions of the STC algorithm:

● Off-line STC- Gets a geometrical description of a bounded planar environment as input.
● On-line STC- No prior knowledge about the environment, except that obstacles are

stationary. The robot uses it’s on-board sensors to detect obstacles.
● Ant-like STC- No apriori knowledge of the environment, but it may leave pheromone-like

markers during the coverage process.

1.1.1 The square-shaped robot
 A square of size D. It is allowed to move only in directions orthogonal to it’s four sides, without
rotating during it’s motion.

1.1.2 Cell

1

 The work-area is divided into square cells of size 2D (while D is as described in paragraph
[1.1.1]). A cell can be free or contain obstacles. It is considered, that if a cell contain an obstacle,
the robot cannot reach it.

1.1.3 Sub-Cell
 Each cell is divided into 4 square sub-cells, of size D. This means that each sub-cell is precisely
the size of the robot.

1.1.4 Spanning tree
 As the work-area is divided to cells, each reachable cell will finally become a vertex of a
spanning tree. The spanning tree represents the path for optimal coverage of the work-area. The
edge between 2 vertices is passing from the center of the cells, while the robot is moving across
this edges, covering the sub-cells.

Figure 1: a) Grid approximation of a given work-area. b) A spanning tree of the grid. c) Zoom in on

current cell and it’s neighbours.

2

1.1.5 On-line STC Algorithm
 Our project focused on the on-line version of the algorithm, where the robot uses its on-board
sensors to detect obstacles and construct a spanning tree of the environment while covering the
work-area. Given N- the number of cells in the work area, the on-line STC algorithm completes
an optimal covering path in time O(N). However, it requires O(N) memory, and this requirement
limits the size of work-areas that can be covered by the on-line algorithm.

1.2 IOIO Framework
 The IOIO is a board specially designed to work with Android devices. The IOIO provides robust
connectivity to Android devices via USB or Bluetooth connection and is fully controllable from
within an Android application. We used the IOIO library to manage the Robot movement. The
board is attached to the robot, and communicates with the application via Bluetooth [2].

Figure 2: IOIO board

1.3 Obstacle Detection
 Our application is using the Android device’s camera, and a small convex mirror to take pictures
of the surface around the robot.

2 The STC on-line algorithm

 Goal: Given bounded surface, the task is to cover the entire surface, while moving in each
reachable cell one time exactly, and avoiding obstacles.
Input: A starting free cell S.
Assumptions: Stationary obstacles, bounded surface.
Recursive function: A function STC(w, x), where x is the current cell and w the previous
cell along the spanning tree.
Initialization: Call STC(Null, S), where S is the starting cell.
STC(w, x):

1. Mark the current cell x as an old cell.

3

2. While x has a new obstacle-free neighbor:
2.1. Scan for first new neighbor of x in counterclockwise order, starting with parent cell

w. Call this neighbor y.
2.2. Construct a spanning-tree edge from x to y.
2.3. Move to a sub-cell of y as described below.
2.4. Execute STC(x, y).

3. If x = S, move back from x to a sub-cell of w as described below.
4. Return. (End of STC(w, x)).

Figure 3: Six covering stages of the on-line STC algorithm [1]

4

3 Implementation

3.1 Assumptions
The following assumptions are taken:

● The surface is bounded.
● Starting cell is free.
● Obstacles are stationary.
● The robot contains IOIO board.
● The environment is well illuminated.
● The Robot can be attached with android mobile phone.

3.2 Design

3.2.1 Spanning Tree
 The spanning tree is one of the basic structures of the algorithm. As we explained before, the
spanning tree represent the path in which the robot is covering the surface.
Since the algorithm starts with no a priori knowledge about the surface, and need to store all of
the covered surface information on the go.
As the application runs on a mobile phone, a smart selection of data structure was needed, in
order to save runtime memory consumption. Consider all of the above, we decided to implement
the tree using hash-table. That way, we can save only the amount of data needed. This enables
the possibility to run the application on large areas. The cells are the vertices of the tree. The
edges are represented by father coordinate information. This way, the robot can proceed with the
surface detection and at the point it discovered all of a cell neighbours, he can go back to the
father cell.
The hash table entry key is cell coordinate [3.2.2]. The value of each entry contains:

● Coordinates of the cell’s father, i.e the cell who discovered it.
● Is the cell an obstacle.

Time Complexity: Each action of the table is O(1) on average as we used Java’s HashMap.
Space Complexity: O(N) in memory, as N is the number of cells in the surface.

class SpanningTree {
 private HashMap<Integer, HashMap<Integer,Cell>> Table;
 private static SpanningTree _instance=null;
 protected SpanningTree() { /*c’tor , Initialization */ }
public static SpanningTree getInstance(); /* Since it’s singleton */

public Cell putValue(Coord coord ,Coord fcoord,boolean isObst);
public Cell getValue(Coord coord);
public Coord getFatherCoord(Coord coord);
public Coord getFatherCoord(Coord coord)

}

5

3.2.2 Cell Coordination, Robot Orientation
 Each cell is identified by its row and column numbers. The starting cell is selected to be at the
coordinates of (0,0), the robot’s front face direction is considered to be “Global North”.
Each additional cell that is discovered, gets coordinates due to its location according to the
starting cell and the global north.

Figure 4: Cells coordination according to starting cell and “Global North”.

3.3 Obstacle Detection
 For achieving our Goal, to navigate with no apriori knowledge of the environment we use the
Android device’s front camera as a vision Sensor. The camera’s frames are used for Obstacle
Detection and avoidance. There are two main steps in Our obstacle detection algorithm steps,
first step is the “Learning step” and the second step is “Thresholding and Detection”.

3.3.1 “Learning” step
 Performed Once, at the Starting cell. The camera’s frame taken in the starting cell is used to
learn what is considered “free”. Under the assumptions that the starting cell is a free cell and we
are navigating on a flat and uniform surface (in terms of texture and color).
Flow:

1. Get colored frame of the starting cell
2. Convert to grayscale
3. Sample the cell free floor with 7 different predetermined region and calculate the median

color of each ROI.
 These 7 color samples are the threshold values and remain constant throughout the run.

6

Figure 5: a) Frame capture in the starting cell. b) Flowchart for obstacle detection, when first
arrive to a new cell

3.3.2 Thresholding and Detection
 Performed each time the robot reaches to a new cell, “current” cell. Thresholding algorithm is
applied on the current frame using the color samples from the former step. A restriction of this
method of detecting obstacles is that an obstacle need to be in a different color from the
navigation surface.
Flow:

1. Get colored frame and convert it to grayscale.
2. For each color sample perform thresholding to create a binary image.
3. Create one binary image which is the sum of the 7 binary images. Note, black (= obstacle)

pixel has value 0, so pixel is black in the sum binary image only if it is black according to
all the threshold values.

4. Perform median filter to enhance the binary image.
5. For every neighbor predetermined region:

5.1. Calculate median value from the sum image.
5.2. Median value is ~0, then neighbor is occupied (obstacle),
 otherwise neighbor is free.

7

Source:

Summing binary images, each is result of a different threshold value:

Sum binary image after Median filter (final result):

Figure 6: Example of thresholding and detection from source image to final result

8

Figure 7: Example of thresholding and detection with obstacles

class Detector {
private SpanningTree treeTable;
private static Detector _instance = null;
private Scalar[] _samples;
private boolean[] _neighStatus;
...
protected Detector(){

treeTable = SpanningTree.getInstance();
/* More initialization*/

} /* c’tor */

public static Detector getInstance(); /* Since it’s singleton */

/* Returns the direction to the first new neighbor Counterclockwise */
public Direction getMoveDirection(Cell currCell, Orien faceOrien);
/* called for every new frame in new cell, update the _neighStatus */
 public Mat process(Mat inputFrame);
}

3.4 STC Flow

● Taking first camera frame at the free start cell.
● Calculating thresholds values by floor samples- “learning step” [3.3.1].
● Detecting neighbours status and update [3.3.2].
● While there is neighbor to visit / direction to move to:

○ Find next neighbour counterclockwise direction:
■ Check order: Right-> Up->Left->Down
■ For each direction: If free and not visited or is the father (we came from

this cell): choose this direction.
Else check next direction.

9

■ Return NONE if no direction is valid. (Notice in the end of the algorithm we
visited the starting cell in the second time, all neighbours are visited and
there is no father)

○ In case direction != NONE
■ Move the robot for the selected direction.
■ Update the spanning tree.
■ Take new frame from the new cell.
■ Detecting neighbours status and update [3.3.2].

class Stc {

private SpanningTree treeTable;
private Detector detector;
private boolean moveRobo;
. . .
public Direction currentDirection; /* the direction to move the robot */
public void startStc() {

treeTable = SpanningTree.getInstance();
detector = Detector.getInstance();
/* More initialization */
stcAlgorithm(p); //start the stc algorithem
}

 /*run the on-line STC algo, recursive function */
public void stcAlgorithm(Cell currCell);
/* use to synchronise between the algorithm and the Robot movement controlled by IOIO*/
public synchronized void updateMoveRoboFalse();
private synchronized void updateMoveRoboTrue();
}

10

3.5 Objects Interface Diagram

11

4 Test Class
 In order to test the our algorithm implementation and data structures usage, we created a test
object that gets surface input as a matrix. The matrix is built from int values represent cell status
(free or occupied). The information on the neighbour status for the algorithm came from the test
object according to the matrix values. Each time the algorithm discovered new cell, the test object
updated the matrix with step number. That way, in the end of the algorithm we received the
matrix surface with progress of the path.

Figure 8.a: Test Class input representing a surface. -1 indicates obstacles, S is starting cell.

Figure 8.b: Test Class output, showing the path the algorithm created by steps.

12

5 Platform Demo
5.1 The robot
 The robot we worked with contains:

● 2 motors which are connected to caterpillars.
● IOIO board- enable connectivity with Android devices via Bluetooth
● Convex mirror- for getting 360 degrees image of the environment surrounding the robot,

used for obstacles detection.
● Encoders- converting movement into digital and analog signals.
● The Robot can be attached with a mobile phone.

 Figure 9: a) The robot and Android device we worked with. b) A look on the frame of taking

 a picture of the convex mirror, to get a vision of the robot’s area.

5.2 Mobile Phone
 For our work, we used Google Nexus 5.
In order to run the app, a mobile device must have the following prerequisites:

● Camera- taking pictures of the convex mirror on the robot, and getting constant vision on
the robot’s environment, used for obstacle detection.

● Bluetooth- establishing connection with the IOIO board on the robot.
● Acceleration and Magnetic sensors- used for controlling the robot’s movement.

6 Challenges

13

6.1 Robot Structure
6.1.1 Mirror Distance
 As mentioned before, the application uses the phone’s camera in order to take pictures of a
convex mirror and by that gaining information on the neighbours of the current cell. The mirror
on the robot we worked with, is lifted up on plastic holders. The phone is attached to the robot
and due to this, the distance between the camera and the mirror became quite large. This affected
the region we could identify using this method as well as the possibility for good image
processing, as the neighbour cells were only a small portion of the frame. Trying to zoom in
reduced the quality of the image since the mobile phone doesn’t have optical zoom. Zooming also
could not solve the problem of small region. In order to solve it, we built an elevation to the
phone, to get the camera physically closer to the mirror.

6.1.2 Identifying Free Cells Through Plastic Holders
 The plastic holders mentioned in the former paragraph, got in the frame of the camera, as part
of the region of the left and right neighbours. This cause to detect free cells as obstacles. We
solved that by adding samples of the plastic holders in the “learning step” of the obstacle
detection [3.3.1].

6.2 Controlling The Robot Movement
 The main problem of the movement was not accurate enough steps. The algorithm requires the
robot for exact steps, as each sub-cell is the size of the robot. Taking uneven steps can get lack of
coordination between the robot physical location and where the application thinks the robot is.
The atomic steps expected from the robot are 90 degrees rotation to both sides, and forward
movement of a sub cell. Here follows, several methods to control the robot movement.

6.2.1 Motor Control Using Time
 At first, we tried to control the time the motors are running. We measured the time it takes the
robot to make each atomic step, and hard-coded these times as part of the motors control. This
was not sufficient due to battery power lose. In addition, the caterpillars tension got different
results of rotating the robot, even with the same motors power and running time.

6.2.2 Encoders
 Next, we tried to use the encoders of the robot to measure movement. This encoders converts
movement into digital signals. Analysis of the signals also could not make a progress, since the
encoders are using the motors spins. The caterpillars tension got the spin number to be
inconsistent, which made the signals inconsistent and we were unable to rely on it. After
consulting with experts we abandoned this approach realizing our platform is not stable enough.

6.2.3 Phone Sensors
 Eventually, we tried to use the fact that the phone is located physically on the robot, to use it’s
sensors for movement. This solved the rotation problem. Using the magnetic and acceleration
sensors we could get a change in the phone’s orientation angle- and we used it to determine
when we got a 90 degrees rotation and need to stop the motors. This left us with the problem of

14

getting atomic step forward. The robot length is relatively short (10 cm). This took GPS off the
table. Trying to use the pedometer wasn’t successful as it requires vibrations of the phone. Any
other sensor we tried to use also didn’t had the ability to determine such a small movement
change. This is an open issue we have with the given robot.

7 Summary and Future Work

 The relevant background we had for this project was the Object Oriented Programing course. We
started with no knowledge about Android development, image processing or robotics. As the
paper implies, we gained knowledge and experience in those fields.
As shown in this paper, navigation with no a-priori data about the surface can be done in real
time even on modern day mobile phones. Obstacle detection can be done using camera and image
processing, allowing the surface to be with no actual limitations. As we showed, there is no real
limit even on the size of the surface, other than runtime memory. Our work produced android
application, ready to be used as a platform for connecting to a robot and executing the algorithm.
The reliance on the IOIO device enables wide possibilities of robot platforms, as the IOIO is easy to
get and assemble.

For future work we recommend:

● Working with a reliable robot that produce unchanged atomic steps.

Run instructions:

● After installing the application, choose the AndroidSTC icon:

Figure 10: The application icon after installing.

● The main screen shows the image of the frontal camera, on top of it 2 buttons and 4
squares.

● The IOIO button is for checking connectivity with the IOIO board.
● Align the squares with the starting cell neighbours.
● Press the STC button to start the algorithm.

15

 Figure 11: Application’s main screen

References:
1. Yoav Gabriely and Elon Rimon, Spanning-tree based coverage of continuous areas by a

mobile robot, Department of Mechanical Engineering, Technion, Israel Institute of
Technology, Israel

2. Ytai Ben-Tsvi, IOIO for Android documentation, https://github.com/ytai/ioio/wiki
3. Basem M. ElHalawany, Hala M. Abdel-Kader, Adly TagEldeen, Alaa Eldeen, Sayed Ahmed,

Vision-Based Obstacles Detection for a Mobile Robot, Shoubra Faculty of Engineering,
Benha University, Cairo, Egypt.

16

https://github.com/ytai/ioio/wiki

