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1 Preface 
 

The presented report documents the result of the project devoted to dynamic modeling 
and control design development for an autonomous micro quadrotor. 

The quadrotor is of the type of X-3D-BL Research-Pilot. 

Our objectives in this project are to identify open loop transfer function, considering 
“black box” controller added for stabilizing, in all 4 channels: pitch roll yaw and 
throttle, from experiments on a pre-stabilized quadrotor and design a controller for 
each channel and inquire coupling between channels. 

In this report we present: 

 Given hardware and interfaces for real time control. 

 System frequencies prediction and sampling times of the sensor. 

 Various ways of identifying open-loop transfer function from the close loop 
measurements for each channel as siso linear models. 

 Controller design for each channel as linear siso systems 

 Identifying the coupling between channels to asses mimo transfer function. 
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2 Introduction 
 

The quadrotor is a MAV- miniature aerial vehicle type. The development of the MAV 
is accelerating these days in order to use this device in various fields, such as precision 
payload delivery, aid in rescue missions,aerial surveillance 
In complex or cluttered environments like office buildings and commercial centers, 
there is a need to acquire intelligence in hostile or dangerous environments such as 
caves, forests, or urban areas, rather than risking human life. 
 
This project involves several engineering fields in order to achieve the maximum 
performances, the quadrotor in the aspect of mechanics have to be light, but still strong 
in order to endure harsh weather and strong impacts.  
In addition electronics have to be on board such as sensors, controllers and in several 
quadrotors also camera.  
 
In our project, we received the quadrotor from the ISL lab in computer eng , and in 
addition we received computer code that is communicating with an electrical box that 
sends and receives information in 50 Hz, an IMU sensor from XSens and a remote 
control that has option to control the quadrotor manually or automatically. 
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3 System description 
 

3.1 System components 

3.1.1 X-CSM 
 

The X-CSM is the mechanical frame of the X-3DBL UFO. 
The booms, which are made of a rigid carbon fiber-balsa 
wood sandwich material, can bereplaced individually. The 
central unit of the frame called the ”X-CSM Core” is made 
of light weight laser-cut magnesium parts. Being built out 
of these state-of-the-art materials the X-CSM is a very 
robust high-tech basis for your quadrotor aircraft. 

3.1.2 X-Base 
 

The X-Base is the central control unit which isconnected to and communicates with all 
activeelements of the X-3D-BL. Next to the battery, themotor controllers, the X-3D 
gyro and the receiveryou can also connect several LEDs to the X-Base togive your X-
3D-BL a unique fancy look. 
 

3.1.3 X-3D 
 

The X-3D is the sensor unit of the X-3D-BL. Withthree piezo-gyros and highly 
optimized controlloops it does the actual flight/attitude control. Allparameters 
influencing the in-flight behavior can betuned by connecting the X-3D to a PC using 
the USBadapter that came with your X-3D-BL. Once you areon the field for flying you 
can select four differentparameter sets using two jumpers. 
 

3.1.4 Motors 
 

The X-BL-52s motors by HACKER Motors 
Germanyare custom-built for the X-3D-BL. 
The motors areperfectly suited for the 
application in this vehicle. 

 

 

 

 

 

 

Figure3.1: X-CSM 

Figure3.2: the X-BL 52s motor 
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3.1.5 X-BLDC brushless motor controllers 
 

Every motor is controlled by an independent 
XBLDCbrushless motor controller. The 
controllers arehighly optimized for the X-BL-52s 
motors and thusensure the highest efficiency 
possible. Please note thatfor this reason the 
controllers might not work with adifferent motor 
type. 
 
 

3.1.6 System remote control 
 

Our system has 2 configuration of control. Manual 
control, that is completely manual in all 4 channels, and 
automatic control. 

 

 

In the automatic control mode we have the 
option of choosing between complete automatic 
control in all 4 channels or manual in few 
channels and automatic in the others.  

This feature of semi-automatic gives us the 
ability to examine our automatic controller will 
manually stabilizing the other channels. 

 

 

 

 

In addition we have 3 activation mods for the quadrotor that 
we can switch between them by moving an on-board jumper. 
The 3 mods are Beginner, Advanced, and Expert. These 
mods relate to the quadrotor’s inner controller and change its 
band-width according to the mod. The change of the 
quadrotor’s mod effects on the dynamics of the system and 
makes the helicopter react faster or slower to the given 
control signal. 

 

Switch between manual and auto 

Switch between semi automatic and manual 
control in the automatic mod 

Mode change jumper 

Figure3.3: XBLDC brushless  

Figure3.4 remote control 

Figure3.5: switches  

Figure 3.6: jumper 
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3.2 Basic control 
 

The quadrotor generates upward force using 
four rotors whose angular velocity can be 
controlledusing the remote control.As a result 
of rotating rotors, liftforces are generated. As 
the rotors rotate they are subject to drag caused 
by the air beingmoved. The drag results in a 
reactive moment on the rotors known as the 
induced moment. Theinduced moment acts on 
the rotor in the opposite direction of the rotors 
direction. 
As a result of counter rotation between two 
pairs of rotors, counter moments has induced and results balance in the yaw channel  
 

3.2.1 Pitch channel 
 

Pitch is when the quadrotor’s performs a 
rotation around the y-body axis. This is 
achieved by changingthe angular velocity of 
the rotors on the x-body axis that is rotor 1 and 
3. If the desired rotation is positive the pitch is 
performedby increasing the angular velocity of 
rotor 1 and decreasing the angular velocity of 
rotor 3. Thisresults in a positive pitch or 
rotation around the y-body axis.  

 

3.2.2 Roll channel 
 

Roll is when the quadrotor’s performs a rotation 
around the x-body axis. This is achieved by 
changingthe angular velocity of the rotors on the 
x-body axis that is rotor 2 and 4. If the desired 
rotation is positive the roll is performedby 
increasing the angular velocity of rotor 2 and 
decreasing the angular velocity of rotor 4. 
Thisresults in a positive roll or rotation around the 
x-body axis.  

 

  

 

 

Figure3.7 

Figure3.8: pitch rotation 

Figure3.9: roll rotation 
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3.2.3 Yaw channel 
 

Yaw is when the quadrotor preforms a rotation 
around the z-axis. This rotation is achieved by 
changing simultaneously the angular rotation of 
one pair of rotors. Positive rotation around the z-
axis is results from increasing angular rotation in 
motors 1 and 3 and as a result , the torque 
increases in those motors and results moment 
around the z-axis which makes the quadrotor 
spin .  

 

3.2.4 Throttle channel 
 

The throttle along z-axis is achieved by increasing the angular rotation equally in all 4 
motors, which results an increase in the lift force which makes the quadrotor gain 
altitude. 

3.3 Transmitter 
 

The transmitter we used is a custom made transmitter that is 
connected to computer through com port. 

This transmitter gives us the ability to design a reference 
input to the system and a controller in matlab environment, 
compile it with a computer code and transmit it to the 
helicopter. Communication to and from the transmitter is in 
100 Hz 

3.4 Sensors 
 

The QuadRotor’s platform was further equipped with an 
IMU system designed by 
the German company XSens, the MTi-G. The MTi-G is a 
GPS aidedMEMS based IMU and static pressure sensor.  
The MTi-G has an onboard Attitude and Heading 
Reference System (AHRS) andNavigation processor. This 
low-power Digital Signal Processor runs a real-time 
Kalmanfilter providing GPS-enhanced, 3D orientation 
data. 

  

Figure3.10: yaw rotation 

Figure3.11: transmitter 

Figure3.12: MTI-G sensor 
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3.5 Blocks diagram 
 

After analyzing the system architecture we understand that our helicopter dynamics is 
affected by an on board given controller that supposed to stabilize the system and we 
have no ability to change this controller or know its effect on the system. 

Therefor we cannot predict the system behavior with the understanding of the dynamic 
equations of the helicopter only.  

In the next figure we can see the block diagram of the open-loop transfer function and 
the effects of the inner controller. 

     system plant: Open loop tf+”black box” controller 

 

 

 

 

 

3.6 Experiment system 
 

Our system contains the helicopter with it sensors, the computer and the remote 
control. 

The sensor operates with the frequency sampling of 512 Hz, while the remote control is 
transmits the data to the helicopter with the sampling frequency of 50 Hz. 

In fact in order to activate the system, we required to synchronize all those system the: 
acquisition data system and transmitter system. 

 
Figure 3.14: system scheme 

 
Inner 

controller 
System 

dynamics 

Figure3.13: Process  
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4 Frequency analysis 
 

4.1 Introduction 
 

In order to receive better measurements and being able to sort inaccuracies between the 
measurement signal and the simulation signal to disturbances in the experiment or 
noise from the sensor we must understand our sensors. 

Our sensor system is an IMU (inertial measurement unit) from XSens [3.4]  

Our unit takes measurements of angular rate and linear acceleration in all 3 axis. Using 
The MT-Manager software that was given with the sensor, gave us the ability to 
choose sampling rate of the sensor.  

The IMU has the ability to estimate the Euler angles using an onboard Kalman filter, 
but this option restricts the sampling rate to 100-120 Hz. 

We choose to work with sampling rate of 100 Hz and control the Euler angles. 

4.2 Tests and problems encountered 
 

First tests 

Our first measurements took place on a swing.  The 
experiment took place while the quadrotor is 
mounted to a wire as shown in the picture. 

In the first tests, in order to test the helicopter 
dynamics we need a stable controller that makes our 
helicopter hovering. 

We choose in the begging a proportional control, but 
because this controller is sensitive to interruption we 
switch the controller to PID, the tuning set by trial 
and error. 

The helicopter react good to the controller for several seconds and afterwards start 
swinging.  

We could see from the IMU output that the quadrotor indeed swings and we saw that 
the sensor measures large angles. We guessed that the instability of the helicopter 
results from large disturbances from the rope and from the restriction of the movement 
of the helicopter. 

 

 

 

 

Figure4.1: quarotor on awing 
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Second set of tests 

After sensing that we could encounter problems with the rope we decided to 
disconnect it and try to preform test without any constrains on the system.   

As we made those tests after few seconds the helicopter started to divert from his 
desire angels. It was obvious that the behavior of the helicopter on the swing wasn’t 
according as a result of the wire as we suspected.  

Therefore we decided to take measurements from the sensor while the helicopter is in 
manual mode while hovering. 

4.3 Manual record conclusion 
 

After the manual record we notice that the IMU starts to measure unrealistic angels, 
which don’t reflect the actual condition of the helicopter, after 30 second. 
In addition some other student that work with this sensor before us, mentioned that we 
can’t rely on the IMU results of measuring angles, because this sensor has inner 
observer which isn’t suitable for helicopter behavior. 

Our first assumption is that we have probably some uncertainty in the helicopters 
spectrum. 
That is why we decided to check the helicopter spectrum. 
 
This is the result we got from the acceleration and the gyro in the three different axes. 
The Fourier Transform made by the function “fouriertrans”{appendix A}. 
 
 

 
Figure 4.2: acceleration spectrum with sampling of 100 Hz 
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Figure 4.3: angular velocity spectrum with sampling of 100 Hz 

 

We can see that we received spectrum of signals within the range of 0-50 Hz. This 
result makes clear that when we want to observe the Euler angle with the onboard 
kalman filter, all signals that has the spectrum larger than 50 Hz (nyquist frequency) 
will damage our observation of the angle (folding effect). 

Quadrotor signals spectrum prediction 

We realize that we must understand the spectrum of the signals in the system in order 
to determine the correct sampling rate of the helicopter. 

Our prediction was:  

Assuming speed rotor of 3000 ~ 4000[ ]n rpm   and because we have two blades to 

each rotor. 

3000 4000
2 ~ 2 100 ~ 133[ ]

60 60
f HZ   

 

From this assumption we can see that wrong sampling rate has chosen an there for we 

decided to increase the sampling rate to 512 Hz 
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4.4 Aliasing effect 
 

One of our concerns is that the spectrum that we received from the Fourier Transform 
as shown above, is not the actual spectrum of the system, we sense this because no 
high spectrum signal has appeared in the range. 

Therefore, we can understand that we have aliasing affect. 

4.4.1 The aliasing problem 
 

In theory, a Nyquist frequency just larger than the signal bandwidth is sufficient to 
allow perfect reconstruction of the signal from the samples; however, this 
reconstruction requires an ideal filter that passes some frequencies unchanged while 
suppressing all others completely. In practice, perfect reconstruction is unattainable. 
Some amount of aliasing is unavoidable. 

Signal frequencies higher than the Nyquist frequency will encounter a "folding" about 
the Nyquist frequency, back into lower frequencies. For example, if the sample rate is 
20 kHz, the Nyquist frequency is 10 kHz, and an 11 kHz signal will fold, or alias, to 
9 kHz. However, a 9 kHz signal can also fold up to 11 kHz in that case if the 
reconstruction filter is not adequate. Both types of aliasing can be important. 

 

Another example to 
aliasing effect we can 
see in the next figure.  

We can see that 
sampling the signal at 
2Wn causes the 
spectrum that is after 
the sampled frequency 
to fold. 

 

 

4.4.2 Anti-aliasing 

When the condition  
  

 
   is met for the highest frequency component of the original 

signal, then it is met for all the frequency components, a condition known as the 
Nyquist criterion. That is typically approximated by filtering the original signal to 
attenuate high frequency components before it is sampled. They still generate low-
frequency aliases, but at very low amplitude levels, so as not to cause a problem. A 
filter chosen in anticipation of a certain sample frequency is called an anti-aliasing 
filter. The filtered signal can subsequently be reconstructed without significant 
additional distortion. 

Figure 4.4: example of folding (from control theory notes by Leonid Mirkin) 

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Anti-aliasing_filter
http://en.wikipedia.org/wiki/Anti-aliasing_filter
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4.4.3 Aliasing in our signals 
 

As we can see from the result of the test that we measured with higher sampling rate, 
the system indeed has high frequency signals. 

 

 

 
Figure 4.5: acceleration spectrum with sampling of 512 Hz 
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Figure 4.6: angular velocity spectrum with sampling of 512 Hz 

 

We can see from the plots that high frequencies indeed exists in the system       

( 90 130[ ]f HZ  ) and as a result of measuring in low sampling rate we received the 

aliasing effect. 
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4.5 Filtering signal 
 

In order to inquire the helicopter spectrum and to verify our conclusion, we decided to 
filter our signal through antialiasing Filter, and then to perform a down sampling, we 
assume that after we filtered the signal, we won’t suffer from the aliasing effect, 
because all high frequencies signals will be filtered .So we perform the test according 
to next figure. 

 

 

 

 

 

 

Figure 4.8: scheme of the signal filtering 

 

Our “antialiasing Filter”: is: . . ; 50[ ]b
b

b

w
L P F w HZ

s w
 


 

  

Sampling in 
512 Hz 

Low pass 
filtering 

Down 
sampling 

Figure 4.7: The process of filtering the signal 
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The signal with sample time of 512[ ]f HZ  after L.P.F: 

 

 
Figure 4.9: spectrum of sampling at 512 Hz after filtering 

 

As we can see form this figure we indeed decrease the system spectrum frequency. 
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The signal with sample time of 
512

[ ]
5

f HZ  after “antialiasing Filter”: 

 
Figure 4.10: spectrum after filtering and down sampling 

 

As we see from this figure a lot of our previous frequencies now disappeared, because 
we don’t have folding frequencies in the system. 

Now we had performed a test which makes an averaging process to the signal. 
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Passing the signal through averaging process it’s actually similar to passes the signal 
through “antialiasing Filter”, because it passes only the lowest frequencies.

 
We compered those result to the signal that we received from the “antialiasing Filter” 
and to the signal with rate sampling of 512 Hz. 

We know that the signal with higher sample rate will be without an aliasing, so we 
want to exam which filtering is causing to the signal to be similar to the original signal 
(without aliasing). 
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Figure 4.11: comparison between L.P and average filters.   

 

As we can see from this figure the blue line is the real spectrum because it sampled at 
high rate, the red line is the spectrum in sample rate of 100 Hz but after averaging filter, 
the green line is same to the red ones, but with L.P.F. 

From this result we can see that there is a range of frequencies around 10 Hz that the 
L.P.F is not filtering well. 

At a range frequencies around 12 Hz, the averaging isn’t filtering well. 

Our conclusion from this comparison is that antialiasing filter is a suitable solution for 
us in case we need to work at sampling rate that is smaller than 512 Hz.  
we need to remember that our antialiasing filter it a first order tf and if we increase the 
order we will receive a better filtering. 

The reason that we can filtered the signal it because, the highest frequencies of the 
spectrum are a result of noise measurement and we don’t need them for analysis the 
signal.     
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4.6 Summary 
 

 Errors such as instability of a system can occur as a result of bad 
measurements. 
 

 When sampling a system we must first estimate the system’s spectrum in order 
to implement a correct sampling rate 
 

 As a result of low sampling rate relative to the actual frequencies of the 
quadrotor aliasing effect had occurred.  
 

 The helicopter orientation can be measured on a low sample time only if the 
sensor signals filter with some kind of antialiasing filter, it recommend the 
filter will be with higher order then one. 

 

 We can filter the signal because higher frequencies of the spectrum are result of 
measurements noises. 
 

 Higher sample time allow us to measure the helicopter acceleration and 
orientation without any filtering. 
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5 Model identification 

5.1 Theory 
 

The first principles modeling are to have a predicted model, that we could compare it 
to our selected model. 

5.1.1 Linearization of the model (deviation model) 
 

Our control signal is the pulse that is sent to the helicopter. 

Using a scope we successfully identified the range of the pulse. 

The pulse range in all 4 channels is: 

 Min[pulse] Max[pulse] Control name 
Pitch channel 684 1350 U1 
Roll channel 710 1355 U2 
Throttle channel 782 1238 U3 
Yaw channel 715 1356 U4 

Table 5.1: input value of all 4 channels 

In order to control the system with LTI control system theories we shell linearize the 
signal and control the system around the equilibrium point. 

The new control signals now are: 

1 1 2 2 3 3 4 4995, 990, 1123, 985u u u u u u u u         

5.1.2 Theoretic transfer function model 
 

We know that the control signal is passing through inner controller that has a gyro, we 
consider the inner controller as a “black box” and we cannot assume its effects on our 
dynamic model. There for theoretic transfer function in not relevant and we cannot use 
dynamic equations to conclude about the model transfer function. 

But we consider in the future removing the inner control and for that we add our 
theoretic model to the appendix B. 
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5.2 Identification methods 
 

As we want to receive our parameter from the tests, we had to determine our modeling 
method. 

In this project we study several methods for modeling systems, but not all of them are 
practical in order to find our parameters. 

 

5.2.1 Step response 
 

In this method we set the reference signal to be a step response, and then we examine 
our output signal and by that we can determine the optimal parameters that make 
match of our simulations to the real output signal. 

There are several points that have to take in consider when identifying using step 
reference: 

 The reference has to be big enough so we could identify the parts of the output 
that relates to the system response and the parts that relates to the noisy 
measurement taken by the sensor. 

 The response has to reach steady state in order to examine parameters such as 
settling time. 

The main problem with step reference in roll/pitch channels is that our system is a 
dynamic system, because of that, when we insert a big step to the system the quadrotor 
tilts in the reference angle and accelerating. 

Because of the room boundaries we cannot insert to the system reference bigger then 3-
4 degrees and still wait for steady state. There for reference angle of 3 degrees has been 
chosen, but the problem is that we cannot distinguish between the system behavior and 
the measurement noise in this case. 

 

There for this method of identifying is not acceptable for pitch and roll channels; only 
for yaw channel. 
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5.2.2 Sine response 
 

In this method we set the reference signal to be sin( )r A wt .We know from the finite 

value theorem that if the system is stable, our output will be sin( )y B wt   . 

So by that we can find the amplitude and the phase of the system in any frequency. 

From testing the system in different frequencies we could map the bode figure and 
recover the system’s model. 

Because of the system dynamics our method of inserting sine functions to the system is 
by constraining the quadrotor to a rod, from this configuration we constrain the system 
to rotate only in one axis. 

 
Figure 5.2: the helicopter constraining to a rod 

From this test we build bode diagram for measurement amplitude as function of the 
frequency and by that we can calculate models parameters. 
we can see the bode diagram of real and simulate system in figure 5.3. 

 
Figure 5.3: Usage of sine method 
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5.2.2.1 Lissajou figures 
 

In order to measure the amplitude in every measurement point we studied a method 
which his called lissajou figure. 

This method is define: ( ) sin( )x r t A wt  , ( ) sin( )y y t B wt     

as we need for bode diagram the variable :   ( ), ( )B w amplitue w w
A

 . 
By the plot of the graph of y as function of x we receive ellipse as shown in figure 5.4. 

 
Figure 5.4: example of lissajou figures from our tests 

From this figure we can measure the variable: ,
B

A
 , by measure two specific point. 

Point A and point B, with those points we receive the ratio
B

amplitude
A
 , that’s our 

amplitude. 
After we identify points A, B we can draw two auxiliary lines (red color), as shown in 
figure 5.5. 

Because the lines are in the vectors ( , ),( , )A B B A direction, then we can measure 

point C and D, those points are the most distant from the origin. 

By knowing point C and D we receive: 12
D
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Figure 5.5: finding point A and B 

 
Figure 5.6: description of point C and D 

 

Application of lissajou figures: 

 Model with a noise measurement. 

 For uncertainty models. 

 for non-linearity models 
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5.2.3 Chirp function 
 

In this method we set reference signal to be with changing frequency every second, so 
by that our spectrum will contain all the frequencies that we order to him to contain 
and those frequencies are crucial in order to identify the model of the system. 

After we had received our output signal, we analyzed the spectrum and by divide the 
Fourier transform of the output and the input, we receive the amplitude of our transfer 
function on range of frequencies (only the vital ones). 

Example of input and output thatoutcomeby chirp function in the reference signal. 

 
Figure 5.7: example of chirp function 

 

The main advantage in this method is that we can insert large spectrum of signals in 
one test, there for, random disturbances effect evenly in all frequencies in contrast of 
inserting one frequency at the time to the system and analyze it with lissajou figures or 
any different way 

The disadvantage in this method is that first, we have a band limit for the frequencies 
that we can insert to the system. In our dynamic system, low frequency input can cause 
the system to crash the boundaries of the room .Second, the function spread the input 
frequencies evenly when we should have higher resolution in low frequencies and 
lower in low frequencies. 
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5.2.4 Pulse response 
 

In order to stimulate the system in a limited space, we use a reference control in a form 
of pulse as shown at figure 5.8. 

This is a very effective method because we can insert reference input large enough that 
makes the measurement noise become relatively small and still maintain the helicopter 
in one position and by that we avoid the limited space limitation. 

 
Figure 5.8: example of pulse function 

 

  

0 5 10 15 20 25 30 35
-3

-2

-1

0

1

2

3

time(sec)

ro
ll 

a
n
g
le

(d
e
g
)

input of the system

 

 

input



30 | P a g e 
 

5.3 Limitation in the process 
 

In our tries to model the system we had quite a few problems; those problems caused 
us to receive a non-accurate model at the beginning. 

Our main problems/limitation was: 

 We preformed simulations on the helicopter in the computer science lab, this 
lab doesn’t have un- limited space and every time that the helicopter received 
an angles that bigger then 5-7 degrees he went to the wall and we had to stop 
our test and to start over. 

 The sensor has 1 measurement error. Because of that, any step that is too 
small will be non-accurate; we can’t distinguish between the real response and 
the response that came from our sensor. 
 

 
Figure 5.9: example of bed step response 

 Our helicopter was connected to the computer with wires, which gave rise to 
applied forces on the helicopter. Of course those forces changed our model in a 
very random way. 
This is the reason that we receive a few models every test that we carried out. 
Fortunately those models were very close to each other. 
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5.4 Controller effect on modeling 
 

In order to model the system we first needed a stable controller that caused the system 
to be stable, there are infinite controllers that stabilize the system, but not all of them 
are suitable for us. 

It is common to think that a good controller for modeling a strong controller but it isn’t 
like this at all. 
Our modeling process is first to find a matching closed loop transfer function and then 
to reconstruct the open loop transfer function. 

We know for sure that we have uncertainty in the closed loop tf, the question here is 
which controller causes less uncertainty in the reconstruction of the open loop tf. 

We made some test in order to examine this question.  

We examine the effect of two different controllers , were one, is a proportional 
controller and the other one is a pid controller. We examine those controllers on a 
random transfer function witch we think will be similar to the real one that we will 
identify. 

1 2

0.1
( ) 10 ( ) 10 0.5C s k C s s

s
       

We assume process of: 
 

2.3
( )

3.7
P s

s s


  

For frequencies range of we [0.3,2.5]w  , we see in figure 5.10 that for receiving  a 

radios of 0.1 in the open loop we need less uncertainty in T2, it means he needs to be 
more accurate than the first closed loop tf. 
So by this we notice that for two equal closed loop uncertainties we shall receive less 
uncertainty if we use c1.  



32 | P a g e 
 

 
Figure 5.10: uncertainty circle’s at lower frequencies 

 

For much higher frequencies we see a significant difference between the controller as 
shows at figure 5.11, it mean that if we want to modeling the system for higher 
frequencies we have to choose c1. 

 
Figure 5.11: uncertainty circle’s for f=0.3-3 HZ 
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5.5 Roll and pitch model estimation 
 

After viewing several ways to examine the behavior of the system, in order to estimate 

the open loop transfer function, we decided to choose the pulse method. 

Repeated tests has been made in order to check the model parameters and the 
followings 

 The existence of integrator in our system. 

 The model’s order. 

5.5.1 Model order 
 

First steps of the estimation of the model has made with 4th order model. The idea is to 
find the minimal order of the open-loop transfer function using the close-loop 
measurements.  

Because the open loop tf is reconstructed from the closed loop we choose to use the 
simplest controller that we can use and that is still stabilizing the system.    

We used parametric search where the goodness of fit is the norm of the difference 
between the measured data and the simulation data. The next step, after evaluating the 
open loop transfer function parameters is to use the ‘balreal’ function from matlabthat 
gives us the information about the weights of the mods in the model. Repeated test’s 
results gave us the minimal model to be from 2nd order.  

We can see from figure 5.12 the difference between 2nd order and 4th order. Differences 
are neglected.   
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Figure 5.12: comparison between second and fourth order model response 

From the Root Locus diagram figure 5.13 we verify that the fourth order model has two 
pole non relevant to the model estimation.

 

Figure 5.13:root locus of 4 order model 

0 1 2 3 4 5 6

-20

-15

-10

-5

0

5

10

15

20

time simulate

t[sec]

ro
ll 

a
n
g
le

[d
e
g
]

 

 

comlex model

real

input

simp model

-20 -15 -10 -5 0

-20

-15

-10

-5

0

5

10

15

20

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is



35 | P a g e 
 

5.5.2 Integrator verification in the model 
In order to check the existence of an integrator in the transfer function, we determined 
the transfer function to be from 2nd order with 2 poles. 

  
 

(   )(   )
 

The same method of parameter estimation was used here in order to identify the two 
parameters. 

We can see the two poles in figure 5.14. 

 
Figure 5.14: pole-zero map of second order model 
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determine that there is an integrator in the model. 

Our ratio between the poles is 1

2

3.49
70

0.05

p

p
 

 

The result that there is an integrator in the model is not surprising , because from the 
model physics we can estimate an integrator in the open loop, and another hint for the 
existence of integrator in the systems is the fact that the open loop transfer function is a 
non-stable transfer function. 
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5.5.3 Zeros in the model 
At last before we determine the model shape, we need to decide how many zeros we 
have in the system, that why we run a test that allow to the model to be with two zeros. 
as we seen from the poles zeros map figure 5.15 the system has non dominant two zeros 
because they far away from the imagine axis. 
the closest one is locate at -34 , we can't say for certain that these zeros do not exist in 
the model, but these zeros  can been ignored because he isn't relevant for our purpose 
in modeling the system, we don't intent to control the system in such Bandwidth. 

 
Figure 5.15: pole-zeros map of second order model with 2 zeros 
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5.5.4 Model identification parameters 

Test 1 

Graphs: 

 
Figure 5.16: pulse response 

 
Figure 5.17:control signal to pulse response  
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Test 2 

Graphs: 

 
Figure 5.18:pulse response 

 
Figure 5.19: control signal to pulse response 
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Test 3 

Graphs: 

 
Figure 5.20:pulse response 

 
Figure 5.21:control signal to pulse response 
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Test 4 

Graphs: 

 
Figure 5.22:pulse response 

 
Figure 5.23: control signal to pulse response  
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Summary table 

Test Chosen controller Fit percentage 
1 2.1708 

----------- 
s (s+3.348) 

 

0.85 

2 2.1476 
----------- 

s (s+3.461) 
 

0.89 

3 2.3466 
----------- 

s (s+3.702) 
 

0.87 

4 2.1994 
----------- 

s (s+3.591) 
 

0.88 

Table 5.2: our entire chosen controller in the tests 

 

Final result 

  
2.2157 0.13

( )
3.525 0.1775

P s
s s




 
 

Bode robust diagram 

 
Figure 5.24: bode diagram of robust process 
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Nichols robust chart 

 
Figure 5.25: Nichols chart of robust process 
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5.6 Yaw model estimation 
 

Model estimation of yaw channel is simpler then roll or pitch, and that is because step 
reference is possible without any concerns for the system (unlike pitch \roll step 
reference which results movement of the quadrotor towards the boundaries of the 
room). 

Our estimation of the yaw open-loop transfer function is a 2nd order model. The 
question is whether we have integrator in the system or not. 

We choose proportional controller P=5, and simulate with the rference input of 60 
degrees. 

 
Figure 5.26: step response of model without integrator 

With parameter search we found the open loop to be: 
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We can see that one pole is very close to zero. There for we shell examine a model with 
integrator. 
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Additional tests has mad in a different input reference (30 degrees) 

 

Test 1: 

 
Figure5.27: step response 

 
Figure 5.28:control signal to step response 
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Test 2:  

 
Figure 5.29:step response 

 
Figure 5.30: control signal to step response 
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Test 3: 

 
Figure 5.31: step response 

 
Figure 5.32:control signal to step response 
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Test 4: 

 
Figure 5.33: step response 

 
Figure 5.34: control signal to step response 
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Summary table 

Test Chosen controller Fit percentage 
1 1.4139 

------------ 
s (s+0.7351) 

0.914 

2 1.5203 
------------ 

s (s+0.6739) 

0.88 

3 1.4042 
------------ 

s (s+0.6863) 

0.91 

4 1.4809 
------------ 

s (s+0.6129) 

0.88 

Table 5.3: our entire chosen controller in the tests 

 

Our process eventually after several tests: 

 
1.45 0.1

0.67 0.1
yawP

s s




 
 

We can see that model with integrator is better than the model without. 
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Bode robust diagram 

 
Figure 5.35: bode diagram of the robust process 

Nichols robust chart 

 
Figure 5.36: Nichols chart for our robust process 
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5.7 Coupling between roll and pitch 
 

In our system there are four inputs (pitch_cmd, roll_cmd, yaw_cmd, throttle) and four 
outputs (pitch, roll, yaw, altitude). 
Our assumption is that there must be coupling between the difference inputs and 
outputs. 
In order to examine those coupling effects, we perform a test that we set a reference 
signal only in the roll channel and we examine the pitch angle in order to see the 
correlation between those channels. 

We use a similar proportional controller for both of this channels c=7; 
in order to examine this correlation we first need to isolated the coupling transfer 
function, as we can see in figure 5.37 we try to find a correlation between the roll 
reference signal and the pitch output signal. 
That scheme is reduced scheme in order to simplify the calculation the correlation. 

In that scheme we neglect the transfer function of 
/roll pitchP because we assume that the 

roll output signal that came as outcome from control signal of pitch is very small, this 
is why we can neglect him. 

Of course we see that in this scheme we neglect the yaw and throttle coupling for the 
same reason. 

In this test we focus on the transfer function from   rollu  to
pitchy . 

 

 

 
Figure 5.37: reduced scheme of pitch and roll channels 
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With the assistants of the scheme we will receive the transfer function between roll 

reference signal and pitch output signal: 

/

0

pitch roll pitch roll pitch pitch pitch pitchy u P r y C P
 
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After we received the required transfer function we perform the test 

we can see in figure 5.38  the response of pitch angle to a reference in roll. 

 
Figure 5.38: pitch response to roll reference 

 

From this plot we shell try to found a correlation between the two channels. 
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Our best correlation is second order transfer function  

 

-0.0046391 (s+22.78) (s+11.88) 

------------------------------ 

      (s+7.01) (s+6.727) 

 From this transfer function we see that the k product is a very small one in 
relative to other transfer function in the system. 

 This tf is contras to the input signal, because the negative product in k. 

 This coupling tf contain a poles in 6-7 rad/sec , it mean as long as we don’t set 
the system to work on fast modes(higher frequency), this coupling effect is 
irrelevant to us. 

 

5.8 Summary 
 

 Our theoretic model predictionof all channels contains one integrator and one 
stable pole at least. 

 Several methods of modeling systems exists, but for us, only the step and pulse 
method are practical, because of our boundaries and limitations in our testing 
laband our sensors. 

 As we modeled the roll/pitch process we conclude that this process is indeed a 
second order process and contains one integrator. 

 The process was verified in several tests and showed appropriate fit to the 
simulations. 

 Yaw process also contain an integrator, we can see this following our tests. 

 Second order model for yaw process, gives us an excellent fit between the 
response and the simulations (95% fit). 

 From roll input we saw that there is coupling between the channels. 

 The poles and the zeros of the coupling transfer function are much higher from 
those of the pure process, that’s why we can prefer the system as SISO at lower 
frequency usage. 

 The system is considered symmetrical in bots x and y axis, there for we 
consider pitch and roll transfer functions to be identify. 
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6 Orientation control 
 

In this chapter our goal is to study the fastest controller that the system can endure. 

The method of finding this controller is by inserting a PID controller with different 
bandwidth and analyzing the system response. The process will end when the system 
response becomes on the verge of stability. 

It means the last controller that we found before instability represents the fastest 
response of the system. 

Our objective is to choose a controller that will fast enough and provide reasonable 
response and will be robust enough. 

In our test we examine the system response and compere this response to our simulate 
response that we achieve from knowing the process. 

Our controller form is: ( ) I
p d

K
C s K K s

s
     

6.1 Pitch and roll controller 
As aforesaid, our assumption is that pitch and roll channels have identical process. 
Because of that we design a similar controller for both of them. 

Bandwidth: 2.5 rad/sec  

Parameters: P=4.75 I=0.216 D=0.213 
 

 

Figure6.1: response of controller with bandwidth of 2.5 rad/sec 
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Bandwidth:3 rad/sec 

Parameters: P=6.253 I=0.328 D=0.417 

 
Figure 6.3: response of controller with bandwidth of 3 rad/sec 

Bandwidth: 4 rad/sec  

Parameters: P=9.09 I=0.06453 D=0.804 

 
Figure 6.4: response of controller with bandwidth of 4 rad/sec 
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Bandwidth: 5 rad/sec  

Parameters: P=12.2688 I=1.1056 D=1.1796

 

Figure 6.5: response of controller with bandwidth of 5 rad/sec  

Bandwidth:5.5 rad/sec 

Parameters: P=  14.1028 I=  1.3966 D=  1.3686  

 
Figure 6.6: response of controller with bandwidth of 5.5 rad/sec 
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6.1.1 Conclusions 
 

 As we increase the controller bandwidth our system response to the given input 
becomes faster 

 As we increase the controller bandwidth our simulation is less accurate: 
overshot is higher, and an oscillation starts.  

 In frequency of 5.5 rad/sec the system becomes on the verge of stability and we 
can see well the coupling between pitch and roll.  

 Because the transfer function between roll and pitch have a poles and zeros 
with higher frequency, when we modeled the process, they were irrelevant, but 
now as we increase our system frequency those zeros and poles start to excited 
and changing our predicted response. 

 In order to achieve large bandwidth we must refer the system as MIMO 
(multiple input multiple output) system, at those higher frequency we can’t 
neglect the coupling effect. 

 Our chosen controller is the controller with bandwidth of 3 rad/sec, because of 
the fast response and small oscillation. 

  0.328( ) 6.253 0.417chosenC s s
s

     
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6.2 Yaw controller 
 

Similarly to roll controller we shell stable the yaw process with a PID controller. 
As our bandwidth increase until we receive instability. 

 

Bandwidth: 2 rad/sec  

Parameters: P=2.17  I=0.076  D=0.98 

 

We can see that clearly 
this isn’t a good result; 
our assumptionto this is 
because this controller is 
a very slow one, and it is 
also very sensitive to 
interruption. 
As aforesaid, the yaw 
measure is the less 
accurate from all of Euler 
angels because he 
doesn’t have a 
compensator like the 
others. 

 

Bandwidth: 3 rad/sec  

Parameters: P=4.36  I=0.2252  D=1.62 

 
Figure 6.8: response of controller with bandwidth of 3 rad/sec 
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Figure 6.7: response of controller with bandwidth of 2rad/sec 
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Bandwidth: 4 rad/sec  

Parameters: P=7.09  I=0.495  D=2.12 

 
Figure 6.9: response of controller with bandwidth of 4 rad/sec 

 

6.2.1 Conclusion 
 

 We can see from all of the figures that the yaw angels is not coverage to its 
target value. 

 The measure of yaw angles is not entirely accurate. 

 Because of the bed measurement we can’t verify if our model is correct. 

 Another assumption is because we use a PID controller we cause to the 
frequency of the signal to increase across the limit that our sampling time is 
allows us, and by that our sensor is cant measure an accurate result. 

 In addition we shall examine the effect of coupling, perhaps the PID controller 
cause to excite of the coupling effect. 

 The helicopter is getting power from a wired cable. There for when preforming 
tests like step the power cable twists and results torque in the opposite direction 
to the step witch results inaccurate model. 

 Our chosen controller is 0.22( ) 4.38 1.62C s s
s

     
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7 Summary 
 

In this project we had forced various issues: 

 Sensors analysis  
 developed layout of tests 
 Analysis frequency response 
 Modeling system 
 Handing with uncertainty system 
 Un-linearized model 
 The effect of measurement noise 
 Classic control theory 
 The effect of folding frequencies (alias effect) 
 MIMO system  
 Discrete controller 
 Signal analysis 

 

The open loop siso transfer functions that has identified are: 

 

roll 

 

pitch 

 

 

yaw 

 

 

It was a very interesting and complex project because of this varies of issues that we 
had to understand in order to succeed. 

At the end, we proved that this helicopter can be stable and control by simple 
controller. 

The next step for this project will be to inquire the effecting coupling and the non-
linearized model. 

But in order to that, our experiment system has to upgrade. 
We must change all of the wires connection to wireless and substitute the current 
voltage supply to a battery, and change the control interface. 

Figure 6.10: The process of all Euler angles 
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Appendix A 

Matlab codes 

%% LISSAJOU FIGURES 

clc 

clearall 

formatlong 

 

dt=0.02; %sampling time 

A=13; 

B=20; 

pai=0.5; 

w=1.5; 

N=1000; 

t=(0:N-1)*dt; 

t1=t(200:end); 

r=A*sin(w*t1); 

y=B*sin(w*t1+pai); 

X=-13:13; 

Y=X*B/A; 

X1=X; 

Y1=X1*-A/B; 

plot(r,y,'LineWidth',2) 

holdon 

%plot(X,Y,'.-.r') 

%plot(X1,Y1,'.-.r') 

title('lliasu figure') 

xlabel('reference signal') 

ylabel('output signal') 

axis([-15 15 -21 21]) 

axisequal 

grid 

%% 

 

%%CONTROLLER EFFECT//////////////// 

clc 

clearall 

formatlong 

 

for w=0.3:0.1:3 

R=0.1; 

t=0:0.05:2.1*pi; 

P=2.3/(-w^2+3.7*1i*w); 

disc=R*(cos(t)+1i*sin(t)); 

P_area=P+disc; 

C1=10; 

s=w*1i; 

C2=10+0.1/s+0.5*s; 

T1=C1.*P_area./(1+C1.*P_area); 

T_mid1=C1*P/(1+C1*P); 

T2=C2.*P_area./(1+C2.*P_area); 

T_mid2=C2*P/(1+C2*P); 

%L=C.*P_area; 

figure(1) 

grid 

plot(real(P_area),imag(P_area)) 

grid 

holdon 
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plot(real(P),imag(P),'*') 

 

plot(real(T1),imag(T1),'black') 

plot(real(T2),imag(T2),'g') 

%plot(real(T_mid1),imag(T_mid1),'*black') 

legend('P','mid','T1','T2') 

 

 

end 

 

%%//////////////////////////////////// 

 

function [w,F]=fouriertrans(t,f,N); 

%[w,F]=fouriertrans(t,f,N). Continuous-time Fourier transform 

% 

%   IN: t, vector of equidistant sampled time 

%       f, vector of sampled function values 'f(t)' 

%       N, number of grid points (preferably N=2^k) 

%  OUT: w, row vector of sampled frequencies  

%       F, row vector of sampled Fourier transform 'F(w)' 

% 

%                     Author: GjerritMeinsma, Univ. of Twente 

 

if N < length(f) 

disp('Not all data is used.'); 

end 

T=t(2)-t(1);                 % sampling time 

ws=2*pi/T;                   % sampling frequency 

points=1:(N/2); 

w=(points-1)*ws/N;           % N/2 grid points from [0,ws/2] 

F=T*fft(f(:)',N);            % note: f(:)' is a row vector 

F=F(points).*exp(-j*t(1)*w); % T sum f[n]e^(-jnwT)rect_ws(w) 

 

clc 

clearall 

formatlong 

 

loadtest_2_512_sf_0.mat 

dt=1/512; 

N=16384;%number of sampels 

G_X=data(1:N,5); 

G_Y=data(1:N,6); 

G_Z=data(1:N,7); 

A_X=data(:,2); 

A_Y=data(:,3); 

A_Z=data(:,4); 

N=length(G_Y); 

t=(0:N-1)*dt; 

wb=50; 

%%  data after L.P.F 

G_X_fil=G_X_filter.signals.values; 

G_Y_fil=G_Y_filter.signals.values; 

G_Z_fil=G_Z_filter.signals.values; 

N1=length(G_X_fil); 

t1=(0:N1-1)*dt; 

%% down sampling after filter 

n=floor(N/5); 

G_X_fil_d_s=zeros(n,1);  % gyro X after filter down sampling 

G_Y_fil_d_s=zeros(n,1); 

G_Z_fil_d_s=zeros(n,1); 

for i=1:n 
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G_X_fil_d_s(i)=G_X_fil(5*(i-1)+1); 

G_Y_fil_d_s(i)=G_X_fil(5*(i-1)+1); 

G_Z_fil_d_s(i)=G_X_fil(5*(i-1)+1); 

end 

dt_new=6/512; 

t2=(0:n-1)*dt_new; 

%% down sampling no filter 

n=floor(N/5); 

 

G_Y_d_s=zeros(n,1);  % gyro X no filter down sampling 

for i=1:n 

G_Y_d_s(i)=G_Y(5*(i-1)+1); 

end 

 

%% down sampling with averaging 

n=floor(N/5); 

G_Y_ave_d_s=zeros(n,1);  % gyro Y  averaging  filter down sampling 

for i=1:n 

G_Y_ave_d_s(i)=mean(G_Y(5*(i-1)+1:5*(i-1)+5));        

end 

 

%% spectrum analysis data 

 

[w1,G_X_spec_high]=fouriertrans(t1,G_X_fil,N1);  % high freq with 

filter 

[w1,G_Y_spec_high]=fouriertrans(t1,G_Y_fil,N1); 

[w1,G_Z_spec_high]=fouriertrans(t1,G_Z_fil,N1); 

 

f1=w1/2/pi; 

 

[w2,G_X_spec]=fouriertrans(t2,G_X_fil_d_s,n);  %low frq  with filter 

[w2,G_Y_spec]=fouriertrans(t2,G_Y_fil_d_s,n); 

[w2,G_Z_spec]=fouriertrans(t2,G_Z_fil_d_s,n); 

 

[w2,G_Y_spec_no_fil]=fouriertrans(t2,G_Y_d_s,n);% low freq no filter 

 

[w2,G_Y_spec_ave_fil]=fouriertrans(t2,G_Y_ave_d_s,n);% low freq 

average filter 

f2=w2/pi/2; 

%A_X_spec=abs(fft(A_X)); 

%A_Y_spec=abs(fft(A_Y)); 

%A_Z_spec=abs(fft(A_Z)); 

 

%% gyro high sample 

figure(1) 

subplot(3,1,1) 

plot(f1,G_X_spec_high) 

title('X Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

subplot(3,1,2) 

plot(f1,G_Y_spec_high) 

title('Y Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

subplot(3,1,3) 

plot(f1,G_Z_spec_high) 

title('Z Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 
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%% gyro spectrum low sample 

figure(1) 

subplot(3,1,1) 

plot(f2,G_X_spec) 

title('X Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

subplot(3,1,2) 

plot(f2,G_Y_spec) 

title('Y Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

subplot(3,1,3) 

plot(f2,G_Z_spec) 

title('Z Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

 

%% fft for NO FILTER average filter and L.P.F  

 

 

figure(1) 

plot(f2,G_Y_spec_no_fil,f2,G_Y_spec,f2,G_Y_spec_ave_fil) 

title('Y Angular velocity  spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

legend('spec no filter','spec with L.P. filter','spec with average 

filter') 

grid 

 

 

 

 

 

 

%% acc  spectrum 

 

 

 

 

figure(2) 

subplot(3,1,1) 

plot(f(ind),A_X_spec(ind)) 

title('X acceleration spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

subplot(3,1,2) 

plot(f(ind),A_X_spec(ind)) 

title('Y acceleration spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 

subplot(3,1,3) 

plot(f(ind),A_X_spec(ind)) 

title('Z acceleration spectrum') 

xlabel('f[HZ]') 

ylabel('amplitude') 
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function [error ] = error_min_comp_model( var ) 

%found error of complex model 

loadtest7.mat 

 

dt=0.02; 

roll=data(451:end,14); 

counter=ones(1,length(data(:,14))); 

shift_theo=roll(49); 

roll=roll-shift_theo; 

 

t=(1:length(roll))*dt; 

sb=450; %shift beginning 

A1=0; %%build input 

t1=counter(1:500-sb); 

A2=14; 

t2=counter(501-sb:550-sb); 

A3=-14; 

t3=counter(551-sb:600-sb); 

A4=0; 

t4=counter(601-sb:end-sb); 

input=[A1*t1 A2*t2 A3*t3 A4*t4]'; 

 

s=tf('s'); 

k=var(1); 

z1=var(2); 

p1=var(3); 

p2=var(4); 

p3=var(5); 

 

P=k*(z1+s)/s/(s+p1)/(s+p2)/(s+p3); 

P1=10; 

I1=0.1; 

D1=0.5; 

C1=P1+I1/s+D1*s; 

T=feedback(C1*P,1); 

 

y=lsim(T,input,t); 

error=norm(y-roll); 

end 

 

clc 

clearall 

formatlong 

 

loadtest7.mat 

 

 

[var_new,error,exitflag,output] = fminsearch(@(var) 

error_min_comp_model(var),[10 10 10 10 10]); 

%% edit simulate respode 

dt=0.02; 

roll=data(451:end,14); 

counter=ones(1,length(data(:,14))); 

shift_theo=roll(49); 

roll=roll-shift_theo; 

t=(1:length(roll))*dt; 

sb=450; %shift beginning 

 

A1=0; 

t1=counter(1:500-sb); 
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A2=14; 

t2=counter(501-sb:550-sb); 

A3=-14; 

t3=counter(551-sb:600-sb); 

A4=0; 

t4=counter(601-sb:end-sb); 

input=[A1*t1 A2*t2 A3*t3 A4*t4]'; 

s=tf('s'); 

 

k=var_new(1); 

z1=var_new(2); 

p1=var_new(3); 

p2=var_new(4); 

p3=var_new(5); 

 

P=k*(z1+s)/s/(s+p1)/(s+p2)/(s+p3); 

 

P1=10; 

I1=0.1; 

D1=0.5; 

C1=P1+I1/s+D1*s; 

T=feedback(C1*P,1); 

[F,T1]=balreal(P); 

 [A,B,C,D]=dssdata(F); 

 r=2; 

A_min=A(1:r,1:r); 

B_min=B(1:r); 

C_min=C(1:r); 

Pr=tf(ss(A_min,B_min,C_min,D)); 

Tr=feedback(C1*Pr,1); 

yr=lsim(Tr,input,t); 

y=lsim(T,input,t); 

figure(1) 

plot(t,y,t,roll,t,input,t,yr); 

title('time simulate') 

xlabel('t[sec]') 

ylabel('roll angle[deg]') 

legend('comlex model','real','input','simp model') 

axis([0 6 -23 23]) 

figure(2) 

rlocus(P) 
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Appendix B 

Theoretic model 

From Newton’s second low equation we know: 

M I c k      

In our system we don’t have the k product, so our equation know is: 

M I c    

Our control signal is cause to rotor speed to be: 

linearizing

i nom i nom

after

F F F     
 

After linearizing the force:
 

eq

liftF
K 





  

F
K




  

From experiment the made at Pennsylvania they receive a correlation between the 

speed rotor and the lift force that the rotor produces: 

 

The equation that they receive was: 

3 2 3 3( ) 0.2263 10 2.448 10 11.97 10 [ ]LiftF N           
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Our weight is about 800 gr, that mean from this equation that our equilibrium speed 
rotor is:  

  8[ ] 2 100[ . . ]
4[ ]lif eq eq

NF r p m
rotors

     
 

Of course this is a nominal speed rotor, when we want to hovering we need to increase 
that speed rotor. 

From this we can calculate:   

3

100

30.4526 10 2.448 10 0.0428
eq

lift liftF F
NK

rpm

 

 

         
     

Back to our equation we receive: 

( ( )) 2nom nomM r F F F F r F      
 

1 2system system i

u
K M K K r u      


 

iu - Our control signal. 

We can short this term by define: 2systemK K r K     

Now we transfer the equation to Laplace domain 

 
2 ( )i

i

K
Ku I s c s P s

u s sI c


       


 

We know that the control signal is pass through inner controller, that have a gyro, but 
our assuming is that the inner control don’t change the model shape, it mean the inner 

control only change our constant variable: , ,I c K .  

This model is true about all the our Euler angles, the difference between is again only 

on the constant variable: , ,I c K . 

 


