
Dan Abigadol

Eitan Netzer

Supervisor: Amir Geva

Intro
Developing and implementing an android application
that assists the user in placing the camera in an optimal
position for scanning a document.

Goals
 Image acquisition using the android API.

 Segmentation of the document inside the acquired
image.

 Enabling scanning of the document in case of good
positioning.

Algorithm overview

Source image

Median filter

Edge detection

Relevant contour
finding

Position
calculation

Pre -Processing

Pre-Processing methods choosing
- 4 Pre-Processing methods:

- Normal

- Normal using equalizer

- Inner mask

-Outer mask

Each frame gets pre-processed by only one method out of the four. In case
that a rectangle is not found using the chosen method we switch to the next
method in a cyclic manner until a rectangle is found.

Normal Method
 Our first optional method is using gray level image,

that can be easily extracted from the android camera
(ycbcr format).

 This method should deal with most of the cases.

Normal Example

Normal with equalizer
 Using normal gray level image and filtering it using

histogram equalizer. This path should deal with most
of the cases where the image has a low contrast.

Histogram equalizer
 The histogram equalizer is a transformation that

convert the histogram to be as linear as possible using
the whole dynamic domain



 
0

x
j

j

n
y T x

n

 

Normal with Equalizer Example

RGB to HSV conversion

Choosing saturation

Inner mask method
 colored mask HSV image instead of the gray-level one:

 Conversion of RGB image to HSV image.

 Histogram calculation of the central region of the
image.

 Finding max value

 Setting pixels according to the value found

 The result is a mask of the original image

 Noisy cases

Inner Mask Example

Outer mask method
 This method is identical to the previous one except for

calculating the histogram according to the
surrounding part of the image.

Outer Mask Example

Median filter
This filter replaces the pixel value with the median value
of all the pixels that surrounds it.

This filter is common tool for reducing noise, can be
useful for eliminating the text from the picture and
fixing mistake in the masking process.

Edge detection
Generally the edge detection is done using HPF

Because of noises on the image we use Canny algorithm:

 Phase 1: noises filtering using Gaussian filter.

 Phase 2: gradient calculation for X, Y axes .

 Phase 3: selecting all edges above the upper threshold.

 Phase 4: selecting all neighboring edges which are above the lower
threshold.

Contour finding
 Choosing biggest contour

 Finding four corners:

 Choosing the extreme points

 Choosing points according to the distance from the
image frame and candidates for corners according to
angle

Choosing the extreme points

Choosing points according to the
distance from the image frame

perspective projection
Simple model projecting from 3D coordinates to 2D
coordinates

In inhomogeneous

𝑥 = 𝑃𝑧 𝑝 =
𝑥 𝑧

𝑦 𝑧
1

Position calculation (1)
Perspective projection – projection of 3D
object on a 2D canvas.

Position calculation (2)
 Projected lines distortion

 Calculating rectangle angles

 Calculating opposite edges ratio

Perspective projection- proof (1)

 

 

   

   

           

       

       

0 1

0 2

0

0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 1 0 1 2

2 3 2 0 3 2 3 1

0

:

Rectangle; ; 0,1,2,3

 is Rectangle IFF

0

0

...

0 0

0 0

i

i

Given

p i

P p

A P p P p

B P p P p

A B A B

x x x x y x y y z z z z

z z z z z z z z

z z z z z z z z

z





 

 

   

         



      

       





         

         

1 0 2 0 1 1 2

2 3 0 2 1 3 3 2

z z z z z z z

z z z z z z z z

      
 

 
       
 

Perspective projection- proof (2)

       

   

0 2 1 2 1 3 3 2 0 1 2 3

0 1 2 3 0 1 2 3

2 2 2 2

0 1 0 1 2 3 2 3

0 0 2 2

0 2

0 1 2 3

)

) ,

. .

A z z z z z z z z z z z z

B z z z z z z z z

x x y y x x y y

z z z z

z z

z z z z

Q E D

          

     

          
         

      

 

   

Time complexity
 Speed is important for user experience:

 Image size reduction

 Simple filters

 Canny efficiency (choosing thresholds)

 Finding biggest contour

CPU (Android) time table
Total time match

points

FindBige
stClosed
Contour

RetrieveContours Method

findContours Canny Preprocessing

0.332994 0.000931 0.00033 0.331023 Normal

0.011193 0.146605 0.172901

0.301602 0.002039 0.000275 0.299037 Equalizer

0.011954 0.111399 0.173725

0.584809 0.004095 0.000515 0.578197 Inner
Mask 0.01686 0.12335 0.421027

0.436936 0.006028 0.000637 0.429816 Outer
Mask 0.010025 0.104561 0.314266

*time is given in seconds

Skills gained
 Design and implementation of computer vision

algorithms, under time constraints

 Android programming

 Using OpenCV libraries and combining managed code
with native code. (Java, JNI, C++)

Future research

 The option of masking according to the Hue instead or
along the saturation

 Working with PDF files and adding Optical-
character-recognition (OCR)

 Using transformation on the result image to improve
alignment as post processing

 Using post processing to improve image quality and
readability

 Using learning algorithms to classify the documents
into different types

Bibliography
[1] Matlab documentation

[2] Opencv documentation

[3] Android developer

[4] Computer Vision: Algorithms and Applications; Richard

Szeliski

http://www.mathworks.com/help/matlab/
http://www.mathworks.com/help/matlab/
http://www.mathworks.com/help/matlab/
http://docs.opencv.org/
http://docs.opencv.org/
http://docs.opencv.org/
http://developer.android.com/index.html
http://szeliski.org/Book
http://szeliski.org/Book
http://szeliski.org/Book
http://szeliski.org/Book

Fin

Thanks to Amir

