
COMPUTER SCIENCE DEPARTMENT
Technion - Israel Institute of Technology

May 15, 2012

Students: Aviya Levy, Shany Shmuely
Supervisor: Dan Vardi, Elster Constantine

Augmented Reality above QR Code

 Project overview

 Application Demonstration (site)

 Software state machine

 Algorithms overview

◦ QR Code detection

 Previous Attempts

 Final Algorithm

◦ QR Code 2D transformation

 Corners detection

 Homography

 Future work (site)

 Implement an application which allows smartphone users to
receive advertisements from android smartphone’s camera in
augmented reality environment.

 The method works by recognizing QR codes and display
relevant advertisement.

Finder Patterns

detection

Corners

Detection

Extract the QR

Code

transformation

Decoding By

Zxing

Selecting a

relevant model

Frame+AR

model

rendering

Finder

Patterns

detection

Corners

Detection

Extract the QR

Code

transformation

Decoding By

Zxing

Selecting a

relevant model

Frame+AR

model

rendering

Zero out of five In
“detectable” scale 

Vuforia supplies a Tool that check if an Image is suitable
for detection, the result:

 Trial #0- Vuforia

ZXing library contain a Detector class that detect
a QR Code in an image.

Detect the QR Code finder pattern by searching
for black/white/black/white/black modules in
1:1:3:1:1 ratio in a row, then search for similar
patterns in the follows rows.
 

1:1: 3 :1:1

Rotation of 50°
in X and Y axis

Hough Lines algorithm which detects straight lines in a
frame, then it will be easy searching the three finder
patterns.

Hough Lines algorithm works also for rotated QR Code 

The algorithm extract edges from the Image and processes
them to detects lines features.

The results:

After lowering the threshold

After lowering the threshold the result is detection of too much
lines, and also not the desired.
the outcome can be bad performance and in the worst cause also
wrong detection. 

• Connected component (CC) is a region in
 a binary digital image.

• Every CC has many kinds of properties, Such as area, shape,

center of mass, moment
 etc.

• Finding 2 (or 3) CC, locating one inside the other, with same CM,

or same moment will lead to location of one finder pattern.

Binarization

Based On Two pass algorithm.

We use a raster scan on the binary image, and check
connectivity for each pixel.

Connectivity checks are carried out by checking the
labels of pixels that are East ,North-East, North of
the current pixel (assuming 8-connectivity).

First Pass Data Structure:

Bitmap – 2D bit array representing the binary frame.

Label – 2D array in size of Bitmap.size(), save the label
of every pixel.

UF-union find data structure.

Bool connectedToLeft = (Bitmap.getLeft(i,j) == Bitmap.get(i,j));

Bool connectedToLeftUp = (Bitmap.getUpLeft(i,j) == Bitmap.get(i,j));

Bool connectedToUp = (Bitmap.getUp(i,j) == Bitmap.get(i,j));

for(int i=0; i<Bitmap. Width, i++)
for(int j=0; j<Bitmap. Height, j++)
{

if(connectedToLeft)
{
 Label.Set(i, j, Label.getLeft(i,j));
 if(connectedToUp && Label.getLeft(i,j)!=Label.getUp(i,j))
 {
 UF.Union(Label.getLeft(i,j) , Label.getUp(i,j));
 }

 if(connectedToLeftUp && Label.getLeft(i,j)!=Label.getLeftUp(i,j))
 {
 UF.Union(Label.getLeft(i,j) , Label.getUpLeft(i,j));
 }

}else if(connectedToLeftUp)
{
 Label.Set(i,j,Label.getUpLeft(i,j));
 if(connectedToUp && Label.getUpLeft(i,j)!=Label.getUp(i,j))
 {
 UF.Union(Label.getUpLeft(i,j) , Label.getUp(i,j));
 }

} else if(connectedToUp)
{
 Label.Set(i, j, Label.getUpLeft(i,j));

} else
{
 Label.Set(i, j , Label.NewLabel());
}

}

Second Pass:

for(int i=0; i<Bitmap. Width, i++)

for(int j=0; j<Bitmap. Height, j++)

{

 Label.Set(i, j , UF.Find(Label.get(i,j)));

}

This is the bottle neck of runtime – takes 40%-
50% of total runtime.

UF:
Binary Image: First Pass:

Second Pass:

Finder Patterns

detection

Corners

Detection

Extract the QR

Code

transformation

Decoding By

Zxing

Selecting a

relevant model

Frame+AR

model

rendering

 The algorithm
◦ Calculate 3 angles of the Triangle.

◦ Select the vertex with the largest angle to
be p0

◦ Set p1 and p2 arbitrarily.

◦ If cross(p1-p0,p2-p0).getZ() > 0, swap p1 and p2

 The angle of P0 mostly the largest one but not
always:

p1 p0

p2

2 2 2

: (, ,1) (, ,1)

3 3 4

 (, ,

 4

)

x y x ygreenLine E E E E

a b c





 Let C0 the upper left corner, lies
on blue line and also on the green line

p1 p0

p2

1E 2E

3E

5E

4E

7E

6E

8E

1 1 1

1 1 1

1 1 1

1 1 1

: 0

(, ,) (, ,1) 0

(, ,) (, ,1) 0

(, ,1) (, ,1) (,

1 1

2 2

1 1 2 2 ,)

x y

x y

x y x y

blueLine a b c

a b c E E

a b c E E

E E E E a c

x y

b

  


  


  

 

1 1

2 2

1

1 21

2

2 21

(0 , 0 ,1) (, ,) 0

(0 , 0 ,1) (, ,) 0

(, ,) (, ,) (, ,)

(, ,) / (0 , 0 ,1)

x y

x y

x y

a b c

a

a b c

C C

C C

x y z

x y z z

b c

C C

a b c

 

 

 



 Find the blue and the green lines

p0

p2

1E
 The algorithm

◦ Let N be the vector perpendicular to
V02

◦ Sample pixels in directions
N and –N starting from P0

◦ While the sampled line average color is
bigger then 0.2:

 Shift the sampled line in direction V02

◦ While the sampled line average color is
lower then 0.8:

 Shift the sampled line in direction V02

◦ While the sampled line average color is
bigger then 0.2:

 Shift the sampled line in direction V02

◦ Return the middle point on last
sampled line

p0

p2

5E

7E

 The algorithm
◦ Sample The line between

P1and E5

◦ While the sampled line
average color is bigger then
0.2:

 Shift p1 in direction V20

 Sample The line between P1
and P2

◦ Set E6 to the last point on the
sampled line

◦ Do the same operation to find
E8

6E

p1

p1

p1

p1

p1

p1

p1

Finder Patterns

detection

Corners

Detection

Extract the

transformation

Decoding By

Zxing

Selecting a

relevant model

Frame+AR

model

rendering

 It describes what happens to the perceived positions of observed
planar objects when the point of view of the observer changes

 Let H be the homographic Matrix between QR1, QR2 and (x,y,1)
a vector such that (x,y) is a pixels in a QR1
and let(x’,y’,z’)=(x,y,1)*H so (x’/z’, y’/z’) is the
position of the same pixel in QR2.

 With this information we can achieve two goals
◦ Reconstruction of the original QR code.

◦ Transformation of the planar object need to be displayed
on the QR Code.

Extracting Homographic matrix

 We calculate the homography
using OpenCv Library.

 The method requires at least 4
corresponded pairs of points.

Finder Patterns

detection

Corners

Detection

Extract the QR

Code

transformation

Decoding

By Zxing

Selecting a

relevant model

Frame+AR

model

rendering

Finder Patterns

detection

Corners

Detection

Extract the QR

Code

transformation

Decoding By

Zxing

Select a

relevant

model

Frame+AR

model

rendering

Finder Patterns

detection

Corners

Detection

Extract the QR

Code

transformation

Decoding By

Zxing

Select a relevant

 model

Frame+AR model

rendering

 In order to get the binary image, Threshold algorithm is
applied on the original image.

 The threshold is constant value [0,255].

 Problem- different scenes have different luminance
level, one constant threshold can cause very dark/bright
binary frame.

 The solution - adaptive threshold
Coloring pixels according to its neighborhoods
luminance level.

 This algorithm is expensive in terms of runtime.

