
Fast Scale Space Ridge Detection using Integral Image

Project Report

November 23, 2012

By: Tal Amir, Boris Cherevatsky
CIS Lab, Computer Science Department, Technion, Israel.

Supervisor: Dr. Renen Adar
Rafael Advanced Defense Systems LTD.

Prof. in charge: Ehud Rivlin
CIS Lab, Computer Science Department, Technion, Israel.

Contents

1 Theoretical aspects of ridge detection 2

1.1 Single scale ridges . 2
1.2 Ridge strength functions . 4
1.3 Scale Space and Scale Space Ridges: Lindeberg's work 4
1.4 Our method: Scale space derivatives via Integral Image 5
1.5 Developing the formulas for ridge detection . 6
1.6 How to choose a direction of vmax? . 9

2 Ridge point detection: The basic algorithm 10

2.1 Preliminary calculations . 10
2.2 Detection of zero-crossings . 11

3 Phase 1: Single-scale preprocessing 13

3.1 Strength of a ridge fragment . 14
3.2 Connected components . 14
3.3 The importance of rank-2 points . 17
3.4 A more �exible way for calculating the strength of ridge curves or connected

components . 17

4 Phase 2: Ridge point processing 17

4.1 Getting rid of junk . 18
4.2 Sorting the ridge points from all scales . 18

1

5 Phase 3: Ridge-curve construction 18

5.1 Picking a starting point . 19
5.2 Constructing an output ridge curve . 19
5.3 Jumping between scales . 20

5.3.1 How to jump . 20
5.3.2 To jump or not to jump? . 21
5.3.3 More considerations of whether to jump or not, and how to obtain the

data they require . 21
5.4 Reaching a dead end . 22
5.5 After having �nished constructing a ridge curve 22
5.6 How to determine the ridge width . 22
5.7 Maintaining a ridge domain record . 23

1 Theoretical aspects of ridge detection

1.1 Single scale ridges

Suppose we are given an image I (x, y) and in it we would like to detect ridges of varying widths.
First, let us examine ridge points in a single scale, according to Lindeberg's de�nition.

Let (x0, y0) be a point on the xy-plane, at which I (x, y) is de�ned. Let us denote byHI (x, y)
the Hessian matrix of I at (x, y). Let λmax and λmin the maximal and minimal eigenvalues of
HI (x, y) respectively1, such that |λmax| ≥ |λmin|. Let vmax and vmin be corresponding unit
eigenvectors of HI (x, y). Using these notations, we say that (x0, y0) is a bright / dark ridge
point of I if it satis�es the following conditions:

1. 〈∇I (x0, y0) , vmax〉 = 0

2. λmax < 0 (for a bright ridge point)
λmax > 0 (for a dark ridge point)

This de�nition can be justi�ed using two explanations: One is by local derivatives, the other is
by principal curvatures.

In terms of local derivatives, the rationale of this de�nition is as follows: If we look at the
image I as a surface in 3d-space represented by (x, y, I (x, y)), we can examine a particular point
P0 = (x0, y0, I (x0, y0)) on that surface and look for �good� candidate directions as the direction
of a ridge. For the sake of simplicity, suppose we are interested only in a bright ridge. That
being said, we would expect that if u = (u1, u2) is a vector on the xy-plane that points at a good
direction for a bright ridge at P0, then intersecting our surface at that point with a plane that
is perpendicular to the xy-plane and to the vector u, would result in a graph of a 1-dimensional
function �oating above the xy-plane, which obtains a local maximum at point (x0, y0). First,
this implies that the 1st derivative of the function at (x0, y0) should equal zero. Second, for the
ridge to be the most pronounced, we would expect that the local maximum be the sharpest, or
that the 2nd derivative of that function at (x0, y0) be as negative as possible.

Let us make that argument more formal. As said, we examine our surface by intersecting it
with various planes which are:

1Throughout this work, when we say maximal / minimal eigenvalue, we mean that the absolute value is
maximal / minimal.

2

1. Perpendicular to the xy-plane.

2. Contain the point P0 = (x0, y0, I (x0, y0)).

3. Parallel to a given unit vector v = (v1, v2) (which is normal to the vector u we used before).

Each such intersection gives rise to a graph of a 1-dimensional function, rotated around the
z-axis. From multivariable calculus, it can be shown that the 1st and 2nd derivatives of that
function at point (x, y) are exactly the 1st and 2nd directed derivatives of I along v, which are:

1. ∂I
∂v (x0, y0) = 〈∇I (x0, y0) , v〉

2. ∂2I
∂v2 (x0, y0) = vTHI (x0, y0) v

Now, suppose we would like to choose a direction v for the intersecting plane, such that the
resulting 1-dimensional function would obtain the sharpest local-maximum possible at point
(x0, y0). The �rst requirement is, of course, that the 1st derivative of the function at (x0, y0)
be zero, meaning: 〈∇I (x0, y0) , v〉 = 0, which is similar to condition (1) for (x0, y0) being
a ridge point. Now, for (x0, y0) to be a local maximum, we need to require that the 2nd
derivative be negative, or: vTHI (x0, y0) v < 0. In order to obtain the sharpest local minimum,
we seek to minimize that expression. From the Lagrange Multipliers theorem, it turns out
that the minimum and maximum of vTHI (x0, y0) v s.t. ‖v‖ = 1 are admitted at eigenvectors
of HI (x0, y0). Let us denote by λmax and λmin the maximal and minimal eigenvalues, with
corresponding unit eigenvectors vmax and vmin. Note that the 2nd derivatives along vmax and
vmin are exactly λmax and λmin, as we can easily see, for example, with vmax:

vTmaxHI (x0, y0) vmax = vTmaxλmaxvmax = λmax ‖vmax‖2 = λmax

In seeking a negative 2nd directed derivative, it would make sense to examine solely the direction
vmax, which obtains the maximal magnitude of 2nd derivative. The reason for that is that if the
strongest negative 2nd derivative is λmin, with |λmin| < |λmax| and λmax > 0, then we have a
perpendicular direction vmax along which there is a local directed minimum which is �sharper�
than the local directed maximum along vmin. Intuitively, that makes (x0, y0) not a very good
candidate for a ridge point. Therefore, we choose to examine the direction vmax and require
that along it we have a zero 1st directed derivative and negative 2nd directed derivative, or:
〈∇I (x, y) , vmax〉 = 0 and λmax < 0, which are conditions (1) and (2) respectively.

In terms of principal curvatures, the explanation is easier: If we assume that P0 satis�es the
de�nition of a ridge point, and is not an umbilical point of the image surface, then it obtains two
distinct principal curvatures with two perpendicular principal directions. It can be shown that
the projection of these directions on the xy-plane are parallel to vmax and vmin, and that the
corresponding principal curvatures are κmax = λmax√

1+‖∇I‖2
and κmin = λmin

(1+‖∇I‖2)
3/2 . It makes

sense to look at the principal direction with the larger principal curvature, which is vmax, and to
require that its corresponding principal curvature κmax be negative, which implies that λmax is
also negative. Intuitively, if we stand right at the middle of a bright ridge curve of a surface, and
we walk on a short line perpendicular to the ridge, then our height increases a before crossing the
ridge and decreases after crossing the ridge. Thus, the direction perpendicular to the ridge gives
us a zero directed derivative of the height function, and thus is perpendicular to the gradient of
that surface. Thus, 〈∇I (x, y) , vmax〉 = 0.

One last important thing is, as we saw in these two explanations, the ridge is perpendicular
to vmax at each of its points, and thus the ridge direction is always parallel to vmin.

3

1.2 Ridge strength functions

To our assistance, Lindeberg de�ned three ridge strength functions, which we introduce here in
a slightly simpler version than the original one:

1. M (x, y) = |λmax (x, y)|

2. N (x, y) = λmax (x, y)
2 − λmin (x, y)

2

3. A (x, y) = (λmax (x, y)− λmin (x, y))
2

The basic rationale behind these functions is that the 2nd directed derivative, perpendicular to
the ridge, λmax, should be as strong as possible. The added sophistication of N and A are that
we require that the surface be curved along one direction and much less curved (in N) or even
curved the other way (in A) along the perpendicular direction.

Lindeberg states that the function N is more ridge-speci�c than the two others2. Empirical
observations made in this work lead to the same conclusion, as well as a theoretical reasoning:
N promotes points that have a strong 2nd directed derivative along vmax, while penalizing
points that have a strong 2nd directed derivative along vmin, thus resembling more a vertex of
an elliptic dome rather than a ridge point. Therefore, N will be our strength-function of choice
in this work.

1.3 Scale Space and Scale Space Ridges: Lindeberg's work

Now let us introduce the term of scale space. In his work, Tony Lindeberg used a Gaussian scale
space representation of the image:

L (x, y, t) = I (x, y) ∗ 1

2πt
e−

x2+y2

2t

with t being the scale parameter. Using this de�nition, let us de�ne the following notations: We
denote by ∇L (x, y, t) the gradient of L (x, y, t) with respect to the variables x, y, HL (x, y, t)
is the Hessian matrix of L (x, y, t) with respect to x, y and λmax, λmin, vmax and vmin are
the eigenvalues and corresponding unit eigenvectors of HL (x, y, t). By using our scale space
de�nition of λmax and λmin, we can also extend the de�nition of our strenght function the
following way:

N (x, y, t) = λmax (x, y, t)
2 − λmin (x, y, t)

2

Now we shall seek to detect ridges of varying widths using the notation of scale space.
Lindeberg's de�nition of a scale space ridge point (x0, y0, t0) requires that the point satis�es the
following conditions:

1. 〈∇L (x0, y0, t0) , vmax〉 = 0

2. λmax (x0, y0, t0) < 0 (for a bright ridge point)
λmax (x0, y0, t0) > 0 (for a dark ridge point)

3. N (x, y, t) obtains a local directed maximum at (x0, y0, t0) along the t-axis.

2[Lind-96, page 28]

4

One can look at the set of all scale space ridge points as the intersection of two surfaces in
3D space: The �rst surface is the set of all points (x, y, t) that satisfy conditions (1) and (2).
These are exactly the set of ridge points as de�ned for a single scale image, after performing
the appropriate smoothing of the image. The second surface is the set of points which are local
maxima of the strength function N (x, y, t) along the t-axis.

1.4 Our method: Scale space derivatives via Integral Image

Since working with linear scale space requires performing Gaussian smoothing for each scale,
we decided to work with a di�erent kind of scale space. Let us keep the notation of gradient,
Hessian matrix, eigenvalues and eigenvectors as we used in the case of a single scale. All these
measurements are calculated via convolving the image I (x, y) with numerical di�erentiation
�lters. Here are the �lters that we used:

∂

∂x
=

1

8

 −1 0 1
−2 0 2
−1 0 1

∂

∂y
=

1

8

 −1 −2 −1
0 0 0
1 2 1

∂2

∂x2
=

1

4

 1 −2 1
2 −4 2
1 −2 1

∂2

∂y2
=

1

4

 1 2 1
−2 −4 −2
1 2 1

∂2

∂x∂y
=

1

4

 1 0 −1
0 0 0
−1 0 1

∇2 =

1

8

 0 1 0
1 −4 1
0 1 0

Our term of scale refers to a completely di�erent idea: Instead of performing the appro-

priate Gaussian smoothing prior to applying the numerical di�erentiation �lters, we apply an
augmented version of the di�erentiation �lters to the original image. Suppose we would like to
calculate the derivatives of I in scale σ, with σ ∈ N. Then each element of the basic di�erenti-
ation �lters will be replaced by a sub-block of size σ × σ that contains the number 1

σ2 at each
of its elements. The meaning of this is quite simple: Applying a di�erentiation �lter at scale σ
means that each of the �lter's elements represents a coe�cient to be multiplied by the average
value of the image on a square region of size σ × σ. For example, the ∂

∂x �lter at scale 3 would

5

be:

∂

∂x
=

1

8

−1/9 −1/9 −1/9 0 0 0 1/9 1/9 1/9
−1/9 −1/9 −1/9 0 0 0 1/9 1/9 1/9
−1/9 −1/9 −1/9 0 0 0 1/9 1/9 1/9
−2/9 −2/9 −2/9 0 0 0 2/9 2/9 2/9
−2/9 −2/9 −2/9 0 0 0 2/9 2/9 2/9
−2/9 −2/9 −2/9 0 0 0 2/9 2/9 2/9
−1/9 −1/9 −1/9 0 0 0 1/9 1/9 1/9
−1/9 −1/9 −1/9 0 0 0 1/9 1/9 1/9
−1/9 −1/9 −1/9 0 0 0 1/9 1/9 1/9

Instead of simply convolving the image with such �lters at each scale, we can do a trick to
speed-up things signi�cantly. Let us �rst de�ne the Integral Image of image I:

II (x, y) =
∑

x′ ≤ x
y′ ≤ y

I (x′, y′)

Note that by sampling the integral image at four points, we can calculate the sum of I on any
square region that is parallel to the axes, using this formula:∑

x0 ≤ x′ ≤ x1

y0 ≤ y′ ≤ y1

I (x′, y′) = II (x0 − 1, y0 − 1) + II (x1, y1)− II (x0 − 1, y1)− II (x1, y0 − 1)

Thus, we can use the integral image in order to apply the numerical di�erentiation �lters to the
image at any scale in a rapid way: Each of our �lters consists of 9 nonzero elements at most.
Each of them requires averaging the values of I on a square region, which requires sampling
II at four points. Thus, calculating one numerical derivative of I at a certain pixel requires
us nothing more than to sample the integral image at 45 regions at most and sum the results
after multiplying them with the appropriate coe�cients which appear in the �lter's elements.
Note that this is independent of how big the scale σ is. This means that for each scale, we can
calculate all the numerical derivatives of I in linear time complexity.

In order for a center pixel to be properly de�ned at each sub-block, we will only use odd
scale numbers. Empirically, using �lters with even scales yields values that are quite di�erent
than the two odd adjacent scales, which further justi�es this choice.

1.5 Developing the formulas for ridge detection

In our earlier discussion, we used the notions of λmax, λmin, vmax and vmin. Here we shall
develop closed-form expressions of these values, using the partial derivatives of the image. In
order to remind ourselves that we are working in scale space, we will refer to the image as
L (x, y), keeping in mind that we are calculating its partial derivatives in a certain scale.

First we need to calculate the eigenvalues of HL:

HL =

(
Lxx Lxy
Lxy Lyy

)

6

For this, we need to solve the following equation:

0 = Det

(
Lxx − λ Lxy
Lxy Lyy − λ

)
= (Lxx − λ) (Lyy − λ)− L2

xy =

λ2 − (Lxx + Lyy)λ+ LxxLyy − L2
xy

Which gives us:
λ1,2 =

Lxx + Lyy ±
√

(Lxx + Lyy)
2 − 4

(
LxxLyy − L2

xy

)
2

=

Lxx + Lyy ±
√

(Lxx − Lyy)
2

+ 4L2
xy

2
=

Lxx + Lyy
2

±

√(
Lxx − Lyy

2

)2

+ L2
xy

In order to obtain the maximal eigenvalue, we need to add the root with the same sign as the
sign of

Lxx+Lyy
2 , and in order to choose the minimal eigenvalue, we need to use the opposite

sign. Let us make the following notations:

A =
Lxx + Lyy

2

σ = Sgn (A)
(not to be confused with the scale σ)

∆ =
Lxx − Lyy

2

S =
√

∆2 + L2
xy

Then we have:
λmax = A+ σS

λmin = A− σS

Now we need to �nd vmax. Here things get more sophisticated. Since the eigenspace of λmax
is a whole line that passes through the origin, a unit vector vmax can only be de�ned up to
multiplication by −1, meaning that there is no way to properly de�ne one direction for vmax.
We propose two candidates for vectors in the eigenspace of λmax:

v1 = (∆ + σS,Lxy)

v2 = (Lxy,−∆ + σS)

Let us now show that v1 is indeed an eigenvector of HL with eigenvalue λmax :

HL · v1 =

7

(
Lxx Lxy
Lxy Lyy

)(
∆ + σS
Lxy

)
=(

Lxx (∆ + σS) + L2
xy

Lxy∆ + LxyσS + LxyLyy

)
=(

Lxx (∆ + σS) + σ2S2 −∆2

LxyLxx−LxyLyy
2 + LxyσS + LxyLyy

)
=(

σS (Lxx + σS) + ∆Lxx −∆2

Lxy
Lxx+Lyy

2 + LxyσS

)
=(

σS (A+ ∆ + σS) + ∆ (A+ ∆)−∆2

LxyA+ LxyσS

)
=(

σS (∆ + σS) +AσS +A∆
(A+ σS)Lxy

)
=(

(A+ σS) (∆ + σS)
(A+ σS)Lxy

)
=

(A+ σS)

(
(∆ + σS)
Lxy

)
=

(A+ σS) v1 = λmaxv1

In order to show that v2 is also an eigenvector with eigenvalue λmax, it is enough to show that
they are both parallel. Their vector product yields:

(∆ + σS) (−∆ + σS)− L2
xy = σ2S2 −∆2 − L2

xy = L2
xy − L2

xy = 0

which proves our claim.
It is very important that we remember two facts about the vectors v1 and v2, which we have

just proven to be eigenvectors:

1. v1 and v2 are not unit eigenvectors. If we want to use one of them for the role of vmax in
the previous discussion, we need to normalize it �rst, and take into consideration the fact
that they are not necessarily nonzero.

2. It is still not clear which one of them to choose for the direction of vmax. This will be
discussed in the next section.

One last calculation we need is the ridge strength function:

N =

λmax
2 − λmin2 =

(A+ σS)
2 − (A− σS)

2
=

4AσS =

4 |A|S =

|Lxx + Lyy|
(

(Lxx − Lyy)
2

+ 4L2
xy

)

8

1.6 How to choose a direction of vmax?

The basic ridge detection algorithm we perform works separately at each scale and tries to detect
points which satisfy the conditions for a ridge point, as descried in section 1.1 on page 2. All
the partial derivatives for that purpose are calculated in the scale we're wokring in. The basic
idea is to look for zero-crossing points of the scalar product 〈∇L, vmax〉. For this we employ an
algorithm similar to marching-square. We compare the values of that product at two adjacent
points, and whenever it changes sign in these two points, we detect the zero-point that lies
between them via linear interpolation. So far - so good. However, there is a slight di�culty.
Suppose p1 and p2 are two adjacent points on the plane, and that either of these two scenarios
happen:

1. We use v1 at p1 and v2 at p2, but v1 at p1 faces the opposite direction of v2 at p2.

2. We use v1 as the direction of vmax in both points, but v1 rotates in more than 180o when
moving from p1 to p2.

Any of these cases would lead us to detect a �zero-point� of 〈∇L, vmax〉 that we have created
on owr own, due to a poor or inconsistent choice of direction for vmax in the two points, which
made the scalar product change sign arti�cially. We would like to avoid this. The full details
of the solution to this problem will be given in the next section. This is just to demonstrate
the tremendous importance of a wise choice for v1 and v2. Failure to do so would generate fake
ridge points.

Let us examine the scalar product of v1 and v2:

〈v1, v2〉 = Lxy (∆ + σS −∆ + σS) = 2σSLxy

While S is always non-negative, σLxy can hold negative values, meaning that v1 and v2 might
face opposite directions even at the same point, implying that a poor choice of vmax would
guarantee that we generate a false zero-crossing.

Let's examine what happens when one of the vectors, for example, v1, is zero. This would
immediately imply that Lxy = 0, which would further imply that S = |∆| . Assigning this to
∆ + σS = 0 would yield that |∆| (σ + Sgn (∆)) = 0.

Now, what if both vectors v1 and v2 would equal zero simultaneously? Can this possibly
happen? If it happens, it would imply:

Lxy = 0

|∆| (σ + Sgn (∆)) = 0

|∆| (σ − Sgn (∆)) = 0

which would imply ∆ = σ = 0, which would further imply that Lxx = Lyy = Lxy = 0. This
means that we are at a planar point, which does not satisfy the conditions for a ridge point
anyway (since λmax = 0). Therefore, at a ridge point, at least one of the vectors {v1, v2} has
to be nonzero. Which one should we choose as the direction of vmax? At �rst guess, we might
want to choose at each point the vector with the higher norm for the direction of vmax. Looking
closely at the expressions of v1 and v2, we can see that if Sgn (∆) = σ then v1 would have the
higher norm of the two and if Sgn (∆) = −σ then v2 would have the higher norm.

Note that even though this choice appears to make sense, it would still not solve our problem.
The reason for this is deeper than merely a di�culty in choosing a direction for an eigenvector of

9

HL. As this project's supervisor, Dr. Renen Adar, has shown, it is impossible to algorithmically
create a single function f (x, y) such that its zero crossings would give us the ridge curves of an
image I (x, y), using only local di�erential operators. A sketch of the proof of this claim can be
found in the presentation slides of our project.

2 Ridge point detection: The basic algorithm

Here we present the basic algorithm for detecting ridge points and ridge curves. This algorithm
is run for each scale separately. Here is a basic description of what it does:

1. Take a greyscale image I of size M ×N as input.

2. Calculate its 1st-order and 2nd-order numerical di�erentials (Lx, Ly, Lxx, Lxy, Lyy) in
the desired scale, using Integral Image, as shown in section 1.4.

3. Calculate: λmax, λmin, v1, v2

4. Detect zero-crossing points of the scalar products between each pair of adjacent points.

2.1 Preliminary calculations

All input and output arguments are 2d numeric arrays of size M ×N .

Input

Lx, Ly, Lxx, Lxy, Lyy the partial derivatives in the current scale of

our choice.

Output

λmax, λmin The two eigenvalues of HL.

v1x, v1y, v2x, v2y The x and y components of the vectors v1 and v2.

norm1, norm2 The norms ‖v1‖ and ‖v2‖.
The algorithm

Initialize double scalars A, S, ∆,σ, NFunc.

For each point (x, y), do:

A = (Lxx(x, y) + Lyy (x, y)) /2
∆ = (Lxx(x, y)− Lyy (x, y)) /2
σ = Sgn (A)

S =

√
∆2 + Lxy (x, y)

2

λmax (x, y) = A+ σS
λmin (x, y)= A− σS
v1x(x,y) = ∆ + σS
v1y(x,y) = Lxy (x, y)
v2x(x,y) = Lxy (x, y)
v2y(x,y) = −∆ + σS

10

norm1(x,y) =

√
v1x (x, y)

2
+ v1y (x, y)

2

norm2(x,y) =

√
v2x (x, y)

2
+ v2y (x, y)

2

2.2 Detection of zero-crossings

This algorithm described in the previous section gives us all the information we need in order
to detect ridge points at the desired scale. Now, how do we use it to do so? Let us look again
at the conditions for a point (x0, y0) to be a single-scale ridge point:

1. 〈∇L (x0, y0) , vmax〉 = 0

2. λmax < 0 (for a bright ridge point)
λmax > 0 (for a dark ridge point)

Suppose we are seeking bright ridge points. Then these points are exactly the zero-crossing
points of the scalar product 〈∇L (x0, y0) , vmax〉, at which λmax < 0. Note that if λmax < 0,
then at least one of {v1, v2} is nonzero, which makes it possible to choose a nonzero direction
for vmax.

We detect the zero-crossing points by comparing the values of the product above at each
horizontal or vertical pair of adjacent points.

• We call(x, y) and (x+ 1, y) a horizontal pair of adjacent points. Similarly, we call (x, y)
and (x, y + 1) a vertical pair or adjacent points.

• We call the interval [x, x+ 1]×{y} a horizontal bar at (x,y) , and {x}× [y, y + 1] a vertical
bar at (x,y).

By comparing the values of the scalar product at each pair of adjacent points, we can detect a
zero point that lies on the bar between them, by using linear interpolation. The last missing
detail of how to do this, is how to choose a direction for vmax in a correct manner. At last,
here is the solution: Suppose we are seeking a bright ridge point between points pa = (x, y) and
pb = (x+ 1, y). Let n1 = max {norm1(pa),norm1(pb)} and n2 = max {norm2(pa),norm2(pb)}.
Note that if n1 = n2 = 0, as explained earlier, the best we could hope to detect is a planar
point, which is not a ridge point, so we can skip this pair of points and move to the next one.
If n1 ≥ n2, we will use v1 at both points. Otherwise, we will use v2. If n1 ≥ n2, we de�ne:

va = v1(pa)
‖v1(pa)‖ and vb = v1(pb)

‖v1(pb)‖ . If n1 < n2, we de�ne: va = v1(pa)
‖v1(pa)‖ , vb = v1(pb)

‖v1(pb)‖ . va and vb
are our representatives of vmax at points pa and pb, and we chose them consistently. One last
thing that we need to take care of, is if they are facing opposite directions. We would like the
sign of the scalar product to change only because ∇L has changed its correlation with the ridge
normal, not because the normal itself has rotated 180o. Thus, if 〈va, vb〉 < 0, we negate vb.

Now we can compare the two products: proda = 〈va,∇L (pa)〉, prodb = 〈vb,∇L (pb)〉. If they
are of opposite signs, it means we have a zero-crossing. We detect that point with sub-pixel
accuracy using linear interpolation: Suppose proda · prodb < 0, and let α = proda

proda−prodb . Then

our zero-point is in coordinates: p0 = (x+ α, y).
Now that we have the coordinates of the zero-point, we need to make sure that it's a bright

ridge point. For that, it has to satisfy: λmax (p0) < 0. If it satis�es this condition, it quali�es as

a bright ridge point, with strength λmax (p0)
2 − λmin (p0)

2
. We determine the values of λmax

11

and λmin at non-integer coordinates p0 via linear interpolation. The same goes for dark ridge
points. Just replace the requirement of λmax (p0) so that it has to be positive.

Here is a summary of the algorithm:

For each horizontal pair of adjacent points pa = (x, y) and pb =
(x, y + 1):

n1 = max {norm1(pa),norm1(pb)}
n2 = max {norm2(pa),norm2(pb)}

if max(n1,n2) == 0

There is no ridge point on the bar between pa and pb,
so move on to the next horizontal pair of points.

if n1 >= n2

vax = v1x(x,y); vay = v1y(x,y);

vbx = v1x(x+1,y); vby = v1y(x+1,y);

vanorm = norm1(x,y);

vbnorm = norm1(x+1,y);

else

vax = v2x(x,y); vay = v2y(x,y);

vbx = v2x(x+1,y); vby = v2y(x+1,y);

vanorm = norm2(x,y);

vbnorm = norm2(x+1,y);

vax = vax / vanorm;

vay = vay / vanorm;

vbx = vbx / vbnorm;

vby = vby / vbnorm;

if (vax * vbx + vay * vby) < 0

vbx = -vbx;

vby = -vby;

prod_a = vax * Lx(x,y) + vay * Ly(x,y)

prod_b = vbx * Lx(x+1,y) + vby * Ly(x+1,y)

if (prod_a * prod_b >= 0)

No zero-crossing, so there's no ridge point on the bar

between pa and pb, so move on to the next horizontal

pair of points.

α = prod_a / (prod_a - prod_b)

lambdaMax0 = (1− α)λmax (x, y) + αλmax (x+ 1, y)
lambdaMin0 = (1− α)λmin (x, y) + αλmin (x+ 1, y)

12

if (lambdaMax0 < 0)

Add the point (x+ α, y) as a bright ridge point in the current scale,

with strength: (lambdaMax0^2 - lambdaMin0^2)

else

Add the point (x+ α, y) as a dark ridge point in the current scale,

with strength: (lambdaMax0^2 - lambdaMin0^2)

Note that here lambdaMax0 cannot equal zero, otherwise it would imply n1 =
n2 = 0.

Note that this code handles only horizontal pairs of adjacent points, and therefore only detects
ridge points which lie on horizontal bars. The same code, with slight adjustments, needs to be
run on vertical pairs of adjacent points: Coordinate(x+ 1, y) should be replaced by (x, y + 1)
and (x+ α, y) should be replaced by (x, y + α).

3 Phase 1: Single-scale preprocessing

Before performing the actual ridge detection, that is - stepping along the ridge-fragments and
using them as the building blocks for constructing ridge-cruves, there are some preliminary
calculations we can perform independently for each scale, right after we've �nished to detect
ridge points in that scale. Those calculations will assist us later on our job. We call this the
preprocessing phase. This phase is performed independently on each scale, which means that it
can be parallelized.

In Section 2, we explained in detail the algorithm that detects ridge points which lie on
horizontal and vertical bars. The �rst thing we would like to do next is to connect points which
are close to one another with edges, so that we have a graph-like data structure. Note that by
the way we de�ned the ridge points and bars, the integer parts of a ridge point's coordinates are
exactly the coordinates of the bar it lies on. Now, suppose we have a ridge point on a horizontal
bar. That ridge point can have six possible neighbouring ridge point, as shown in the following
sketch:

13

A neighbouring ridge point can be located at each of the four neighbouring vertical bars
and two neighbouring horizontal bars. For each such neighbour, we add an edge to our data
structure, which connects these two points. Note that we gave each type of edge an index from
1 to 6. By keeping an 8-bit integer for each horizontal bar that has a ridge point on it, we can
tell which edges are attached to it. Actually, 6 bits for each bar would be enough. The same
thing is done for vertical bars, using this indexing:

We call an edge between two neighbouring ridge points a ridge fragment.
Note: In order for the edges to make sense in our purpose of ridge detection, we only create

edges that connect bright ridge points with bright ridge points or dark ridge points with dark
ridge points.

3.1 Strength of a ridge fragment

A ridge fragment is an interval in the (x, y) plane that connects two neighbouring ridge points.
Since each such point has a ridge strength value attached to it, it induces a strength value for
the ridge fragment. That is, the mean of the strengths of the two points it connects. Note that
each such ridge fragment has a length, so if we construct a curve from the ridge fragments, we
can use these values to integrate the ridge strength fucntion on the curve.

3.2 Connected components

While going over all the ridge points and creating the graph, we use a union-�nd data structure
in order to keep track of connected components in our graph. This will assist us later in the
ridge detection. Whenever we create an edge between two vertices that belong to two currently-
di�erent connected components, we tell the union-�nd to unite these two components.

Throughout this process of assembling the graph, we also maintain the value of the 1D
integral of the strength function on each connected component. Each edge has a length, so these
integrals equal the sum of each edge's length multiplied by its strength value, summed for each
connected component separately. These values are updated as follows: Suppose we're creating
a new edge e that connects two di�erent connected components A and B. Then the strength of
the new united connected component is strength (A) + strength (B) + strength (e). Creating
an edge e that connect two vertices that already belong to the same connected component A,
simply requires adding strength (e) to the strength of A.

Maintaining information about the strength of connected components will help us a great
deal. The strength of a single ridge point only gives us local information, which is a bit too

14

sensitive and inconsistent, whereas the strength of the point's connected component gives us a
more global and much more reliable information. Some points appear to be strong points on
their own, but their connected component is rather weak, and thus these points should get a
lower priority in the ridge detection. One can see this clearny on the examples shown ahead.
As we shall explain later, constructing a new ridge curve will always begin from the strongest
unused ridge point of the strongest connected component.

Note that by using a similar calculation as we construct the graph, we can maintain the
length of each connected component. This is also a measurement that can help us later in the
ridge detection.

Aerial photo of a road

15

Ridge points of all scales.

coloring by scale,

color intensity by point strength

Ridge points of all scales.

Coloring by scale,

color intensity by connected component strength

16

3.3 The importance of rank-2 points

There is a rather trivial but yet important underlying observation in the process of ridge detec-
tion: The vast majority of points we expect in the output ridge curves are ridge points which
have exactly two edges attached to them, or rank-2 points. Points with rank 1 (end points) or
points with a rank higher than 2 (intersections) are much less common, and thus interest us
less, even though intersections do exhibit the necessity to choose one of the edges in the ridge
construction process. We will discuss this in Section 5.

This observation motivates us to give more speci�c attention to rank-2 points as the main
building blocks of our ridge curves. As we will see in the following sections, we will always
start constructing a new ridge curve from rank-2 points, and when we consider jumping from
one scale to the next, it will only be to rank-2 points, in order to avoid facing the dilemma of
choosing a direction right after jumping to a di�erent scale.

3.4 A more �exible way for calculating the strength of ridge curves

or connected components

The method we introduced in Secion 3.2 for calculating the strenght of a connected component
C can be formally described by:

strength (C) =

ˆ
C

strength (x) dx

The �rst modi�cation we can introduce in order to allow us more freedom, is to give less weight
to the length of the connected component itself:

strength (C) =

´
C
strength (x) dx(´

C
dx
)α

with 0 ≤ α ≤ 1. With α = 0, we have the same formula as before - a simple integration. With
α = 1, this gives us the average point strength on C. For di�erent values of α between 0 and 1
we can give a di�erent weight to the length of the connected compoent.

The second modi�cation we can introduce is to use a generalized average:

strength (C) =

(´
C

(strength (x))
β
dx
) 1
β

(´
C
dx
)α/β

With 0 < β. The e�ect of the choice of β is the same as the e�ect of choosing the parameter
p when calculating the lp norm of a vector: A higher value promotes connected components
with high local peaks of point strength. A lower value promotes connected components in which
many points have a moderately-high strength. A value of β = 1 is indi�erent to the distribution
of the strength among points, and simply sums it all up.

Recommended values (obtained empirically): α = 0.5, β = 0.5.

4 Phase 2: Ridge point processing

In this phase, now that we've already detected all ridge points and created the graphs of ridge-
fragments from all scales, we can perform some further processing in order to re�ne our database

17

and improve the results of the �nal output.

4.1 Getting rid of junk

Using the information we accumulated by now, we can perform some initial �ltration and get rid
of ridge fragments and ridge points that we know for sure we won't use. Two good candidates
for getting rid of are:

• Connected components that contain a very small number of ridge points, i.e. 10.

• Connected components of which the lengths are very short (a few pixel-lengths).

Ridge points that belong to connected components that do not pass these criteria are good
candidates to be kicked out of the process at this stage. From our experience, it is very unlikely
that such points can be part of a real ridge on the image. Note that these criteria should not be
too strict, otherwise it would cause us to miss useful information on the image. We're only using
these criteria in order to get rid of pure junk in order to speed-up further processing. Selecting
proper (and quite loose) criteria can help us get rid of almost 50% of useless points that we
detected in Phase 1.

Note that we do not �lter ridge points by their strengths or by the strength of their connected
component, as this would imply introducing unnecessary hard thresholds to the algorithm, which
we neither want nor need in order to ensure high quality output.

4.2 Sorting the ridge points from all scales

Instead of using thresholds, we chose a safer mode of operation - we always start constructing
new ridge curves from the best point that yet unchecked. But how do we choose a �best point�?
For this purpose, we create an array that contains all the ridge points from all scales, and sort it
in a descending order according to these parameters (from more important to less important):

1. Point rank

2. Strength of connected component

3. Point strength

Sorting according to this order enables us to quickly separate the rank-2 points from all the
other points, as well as sort the rank-2 points according such that points of stronger connected
components come �rst, and stronger points within the same connected components come before
the weaker ones. Once we have this data structure ready, we can move to the next phase, which
is the actual ridge curve construction.

5 Phase 3: Ridge-curve construction

Now that we have the point array ready, as well as the graphs that contain the ridge points and
ridge-fragments of each scale, we can �nally start to construct actual ridge curves that will be
returned in the output of the algorithm. Our method of operation is as follows: We iteratively
construct ridge curves by picking a starting point, stepping through ridge-fragmetns from one

18

point to the other, and sometimes jump from one scale to the other when it's justi�ed. A ridge
point can be used in more than one ridge curve. A ridge-fragment, on the other hand, can
only be used in one ridge curve. Thus, when we add a new ridge curve to the output, all the
ridge-fragments it uses become unavailable. After we �nish constructing a ridge, we accept it to
the collection of ridge curves that will be returned in the output, and mark its domain on scale
space as occupied. More about the ridge domain records in Section 5.7.

The basic order of operations of this phase is as follows:

1. Pick the best unchecked ridge point to start from, from an array that keeps the points
sorted in a special order.
Note: This should always be a rank-2 point. If no such points are left, this phase is done.

2. Start constructing a ridge curve at one of its two available directions, jumping from one
scale to the other when needed, while avoiding stepping into the domain of a ridge that
we have already created and accepted to the output.

3. When the construction needs to end, start constructing a ridge curve from the same
starting point at its other direction (if it's still available).

4. Connect the two resulting curves to form one ridge curve.

5. Mark the ridge-fragments of that curve as unavailable, preventing the algorithm from using
them when constructing the next curves.

6. Mark the scale space domain that this curve passes through as occupied by that ridge
curve, so ridges that are too close to it (in scale space as well as direction) cannot invade
its domain.

7. Go to 1.

5.1 Picking a starting point

The point from which we start the tracking is always a ridge point. At the beginning of this
phase, we create an array that contains all the ridge points from all scales and sort them in a
descending order according to the following parameters (from more important to less important
parameter): Point rank (i.e. the number of fragments attached to it), strength of connected
component, point strength. This enables us to quickly separate the rank-2 points from all the
other points. It helps us avoid a lot of di�culties as well as obtain a better output if we only
use rank-2 points as starting points.

Each time, we pick the strongest rank-2 point of the strongest connected component. Since
we created the array at the beginning of the tracking phase, that point might no longer be
rank-2, as we might have already used one or both of its ridge-fragments. Therefore, if that
point is no logner of rank 2, we proceed to the next point in the array. The point we pick in
this phase will be used as the starting point for the current ridge construction.

5.2 Constructing an output ridge curve

Now that we have a starting point, we should start tracking from it along the ridge fragments
and construct a ridge curve.

19

We pick one of the two edges that are attached to that point and start stepping along it.
Whenever we reach a point that has a rank higher than 2, we always choose the edge which best
correlates with our current direction of progress. We can accumulate a direction of progress by
exponentially smoothing the last step we made with the �current� direction of progress at the
previous step, using this formula: Suppose the current direction of progress is vd and that we've
just made a new step, denoted by vs. We update vd using this formula:

vd ← αvd + (1− α) vs

with 0 < α < 1.

5.3 Jumping between scales

So far we haven't discussed jumping between scales. Imagine we have just made a step from
point p1 to point p2 which are both at the same scale, using the rules de�ned above. What if,
at an adjacent scale, we have a �better� point than p2? How do we de�ne a better point? And
if it is indeed better, how do we jump to it?

We have found that the best way to do so, is right after stepping from p1 to p2. If p2 is in
scale σ (which we assume to be an odd integer, since, as said before, we only work with odd
scales), we sni� for better points at its two adjacent odd scales {σ − 2, σ + 2} . At these two
scales, we look for ridge points which are at a certain proximity to p2. The best way to look for
them is by searching on both sides of our ridge curve, along a straight line that is perpendicular
to our current ridge curve, at a certain short length of a few pixels, and check if it is intersecting
with a ridge fragment.

5.3.1 How to jump

Suppose there is such an intersection at point q in one of the two adjacent scales. Note that q
does not necessarily lie directly on a ridge point in our database: It is merely the intersection
between our scanning line and a ridge fragment. Thus, let q2 be the ridge point on the ridge-
fragment containing q, for which the vector q2 − q correlates best with our current direction of
progress.

First, let us ignore the question of whether we actually want to change scale and jump from
p2 to q or q2, and assume that we do. How do we jump? The simplest way we found, in order
to keep the curves consistent, is to �step back� from p2 to p1, from there add q as the next point
on the ridge curve, and from there add q2. Note that due to the drifting aside that is sometimes
caused by changing scale, this means that the step from p1 to q might contain a component
that is normal to the ridge curve. We might want to compensate for that o�set, but since the
o�set accumulates as more and more scale-jumps are performed, it might shift the ridge curve
signi�cantly away from the actual object on the image. A good solution might be not to let all
the normal o�set caused by jump manifest itself immediately, but rather divide it between a few
steps during the construction in order to have a more consistent output curve that on one hand,
does not suddently �jump aside�, and on the other hand does not drift away from the objects
on the image which the ridge points originated from.

20

5.3.2 To jump or not to jump?

There are two main factors which we consider important in order to answer the question of
whether to jump or not. First one, obviously, is the point strength. Does q have a better ridge
point strength than p2? Second is the point's local direction: If we continue stepping from q2,
will our step direction correlate well with the current direction of progress? Note that since q is
not an actual ridge point in our database, we need to evaluate its ridge point strength by using
a linear interpolation between the two ridge points at the ends of its fragment. If we want to
be strict in our requirement for strength improvement between p2 and q, we might require that
it gives us at least a certain percentage of improvement, e.g. 5%. Empirically, though, adding
such a requirement was found a bit too restrictive. We might also want to require the connected
component of q to be stronger than the connected component of p2.

In order to avoid complications, we might require that the two ridge points which are con-
nected to q both be rank-2 points, so there is no question of which edge to choose right after
jumping. We can also require this only from q2. Another limitation that we impose is to require
a minimal number of steps that should be made in our current scale before we consider jumping
from it to a di�erent scale. If we haven't made this number of steps yet, we don't look for
optional scale-jump destinations and continue stepping only in our current scale. If, however,
this limitation causes us to get stuck in a dead end (i.e. a ridge point of rank 1 that we stepped
into), we might not want to impose this limitation.

One last and important thing is that we do not jump if our current direction of progress is
marked as occupied at the point q2. See Section 5.7 for more details.

5.3.3 More considerations of whether to jump or not, and how to obtain the data

they require

What if we could ask a few more questions before we actually decide to jump from p2 to q?
What if we could know in advance how far we would be able to walk after having jumped from
p2 to q before reaching a dead end, or how jumping can contribute to the added strength of the
output curve? Surely we wouldn't want to jump to a point from which we can only take one or
two more steps forward, or that guarantees us a signi�cantly lower contribution to the strength,
compared to stepping within our current scale.

At each rank-2 points, there are exactly two adjacent points we can step to. In the tracking
process, it will be useful to know what these directions promise us: What length can we accu-
mulate if we continue to step forward until we reach a dead end? How many points will we meet
along the way? What contribution to the strength can we accumulate in that direction? We can
answer these questions already in this stage, by actually performing this walk in a preliminary
tracking process that does not jump between scales and does not generate output, but rather
collects all that information and updates it to the rank-2 points. Then we can perform the
actual tracking, based on that information.

As we step forward in the preliminary tracking, with each new step, we update the new point
we reach with all the information we accumulated so far. Whenever we reach intersections, we
simply choose the direction which best correlates with our previous step direction. We can also
exponentially-smooth the previous step direction with its predecessors in order to have a more
accurate measure.

Another piece of information that we might want to keep at each rank-2 point is its actual
local direction. We can obtain that direction directly from the direction of vmin, but that is

21

a local measure which might be sensitive to noise, and thus cannot be 100% reliable. Another
way is to measure the actual local direction, by simply taking a few steps forward and backward
and using the di�erence vector as the direction vector. A more time-e�cient way to do so is, as
we walk along the path, we keep a �current direction� variable, say vd, and with each new step
vs, update it via the formula:

vd ← αvd + (1− α) vs

with 0 < α < 1.
Using Heron's formula, we can also approximate the curvature at each rank-2 point. For this

we need to choose points which are at a su�cient number of steps away from the point where
we measure the curvature. However, in this work we couldn't �nd any meaningful use for the
curvature for deciding whether to jump to a point or not. Still, intuitively, it might seem safer
to jump from one point to another when both these points admit low curvatures.

5.4 Reaching a dead end

What do we do when we cannot step forward anymore? There are some cases when the ridge
curves are �cut� in the middle, due to noise or small artifacts on the object that generated the
ridge. We can try to compensate for that by looking ahead in a certain range for the beginning
of the next part of the curve. If we �nd a ridge point that is close enough to the end point, and
is located at an angle from that point which correlates well with the current ridge direction, we
can simply add this point as the next point on the curve and continue tracking from there. If
we want to create a more consistent output curve, we can bridge the gap between these points
using a few �phantom points�, in order to prevent large gaps (more than 1 pixel long) between
adjacent points on an output ridge curve.

5.5 After having �nished constructing a ridge curve

Through out the ridge tracking phase, we maintain a list of all the output ridge curves. Whenever
we �nish constructing a new ridge curve, we add it to the list. Before adding it, we calculate
some measurements of the ridge curve, such as its length and its strength. The strength is
calculated by integrating the point strength along that curve, in the same manner we did for
connected components on Section 3.4. After adding the curve to the list of output curves, we
mark all its edges as occupied. Therefore, they cannot be used or stepped through in further
ridge constructions.

Once we've reached the last rank-2 point in the point array, it means that we ran out of
starting points and thus we've �nished the ridge tracking phase. The last thing left is to sort
the ridge curve list according to the ridge strength and return the desired number of best ridges.

5.6 How to determine the ridge width

At each ridge point, by knowing the scale and ridge angle, we can determine the width of
the ridge around that point and do so quite accurately. Note that we need the angle for that
purpose since this algorithm is highly non rotation-invariant. We have managed to work out
the dependence of the width in the ridge angle empirically. Suppose the ridge angle at point p
is θ with θ ∈ [0, π] (it is important to actually keep θ within that range), and the scale at p is

22

σ. Then the distance from p to the exterior of the ridge (i.e. the local ridge width divided by
2) is given by σ · γ with:

γ = 21/4

√
cos

(
min

(∣∣∣∣θ − 1

4
π

∣∣∣∣ , ∣∣∣∣θ − 3

4
π

∣∣∣∣))

5.7 Maintaining a ridge domain record

Usually, long objects on the image generate similar ridge curves in multiple adjacent scales.
Although we don't use the same ridge fragments in more than one ridge, we still might use
ridge fragments from similar locations in adjacent scales and create multiple ridge curves that
represent the same object. Moreover, this multiplicity of copies of similar ridge curves might
prevent us from returning other ridges, which have a slightly weaker strength but are still good
and should be contained in the output. In order to avoid those repetitions, we maintain a
data structure we call ridge domain record. The ridge domain record aims in preventing the
ridge tracking process to step into regions which are already occupied by other ridges that were
accepted to the output, if in our current tracking we are close enough to the occupied ridge in
three senses:

1. Location on the x, y plane

2. Scale

3. Angle

If we are about to pass in the domain occupied by an already existing ridge curve, in one of the
scales that are adjacent to it, and in a similar direction, we stop the tracking process.

In order to keep track of which directions are occupied and which are not, we divide the
interval [0, π) into k bins, with bin no. i (i ∈ {0, · · · , k − 1}) corresponding to the range of
directions

[
i
kπ,

i+1
k π

)
. The data is kept as follows: For each scale space voxel we maintain a bit

array of k bits. Whenever we �nish constructing a ridge curve and accept it to the output, we
run along all the points that this ridge occupies. These are not merely the ridge points that the
curve passes through, but all the ridge points in our database that are located in that ridge's
domain, taking into account its width (see Section 5.6 for how to calculate the ridge width). We
do this by scanning along a short line that is perpendicular to the ridge curve, with its length
equal to the ridge width at the current point. Moreover, we might also want to take a safety
range of scales, and occupy all the points that are 1,2 or 3 scales up and down.

In each of the points we encounter in the mentioned process, we update its appropriate bin
according to the current ridge direction, and set its �ag to 1, meaning �occupied�.

That process can be sketched in the following pseudo-code. Let us make the following nota-
tions: Let γ [i] , i ∈ {1, · · · , n} be the array of points denoting a ridge curve we just accepted to
the output, with the unit-normals N [i] and the ridge angles θ [i]. Denote by σ [i] the ridge scales
and w [i] the ridge half-width at point i. Let d∈ {0, · · · , k} denote the range of angle bins to occupy and r ∈
{0, 1, 2, · · · } denote the safety range of scales to occupy - both of which are constant parameters
of the algorithm. We do the following:

23

For i ∈ {1, · · · , n}
Let θ̄ = θ [i] with its value taken in [0, π).

Let b =
⌊
θ̄
πk
⌋
.

For j ∈ {−bw [i]c , · · · , bw [i]c}
For s ∈ {σ [i]− r, · · · , σ [i] + r}

Let point p be the point with integer coordinates p =
round (γ [i] + jN [i]).
If there is a ridge point in point p, scale s,

set the following flags at that point to 1:

{b− d, · · · , b+ d} (modk)

References

[Lind-96] Tony Lindeberg - Edge detection and ridge detection with automatic scale selection,
1996.

24

