

• We would like to detect roads in
aerial photos by using ridge
detection.

• Due to different road widths, we
would like to detect ridges in
different scales.

• In [1] T. Lindeberg (1996) proposed a
scale-space ridge detection with
automatic scale selection by using
Gaussian derivatives.

• We propose a faster approach that
approximates Lindeberg’s solution,
plus some additions.

2 / 89

3 / 89

Intuitively, a ridge is a long region which is
brighter than its external surrounding.

4 / 89

If we look at the image as a surface, we aim to
find its watersheds:

5 / 89

 

 

 

2

max

max

Let , : be an image.

Let be the principal eigenvalue of the Hessian matrix of at point

 and let be its corresponding eigenvector.

A point is a if the following conditions

I x y

I

x, y v

x, y ridge point





  max

max

 are satisfied:

(for bright ridges)

In order to set the scale, we convolve the image I with a Gaussian

kernel prior to differentiating.

1. , , 0

2. 0

I x y v



 



 * A similar definition can be found in [1] 6 / 89

 

max

max

A point , is a ridge point if the following conditions are satisfied:

1. , 0

2. 0

x y

I v



 



7 / 89

Problem: A single scale cannot capture all the
ridges.

A small scale is good for the fingers, but leaves small unwanted peaks and

summits on the arm. 8 / 89

Problem: A single scale cannot capture all the
ridges.

A larger scale is good for the arms, but wipes out the fingers.

9 / 89

So why not perform single-scale ridge detection at
each scale separately and combine the results?

A ridge’s width can change along its path.
10 / 89

• In [1] Lindeberg used Gaussian smoothing for

defining the scale-space according to Witkin and

Koenderink [2,3].

• For a given image I(x,y), its linear (Gaussian) scale-

space representation is a family of signals L(x,y;t)

defined by the convolution of I(x,y) with the Gaussian

kernel:

   
 2 2

2
1

, , ,
2

x y

tL x y t I x y
t
e






 

11 / 89

Images at different scales:

12 / 89

   2 2 2

max min, , 4xx yy xx yy xyx y t L L L L LN       

To our assistance, we have a function that measures the

ridge strength at each scale-space point:

Original image N(x,y,t) in large scale N(x,y,t) in small scale

13 / 89

Original image N(x,y,t)

To our assistance, we have a function that measures the

ridge strength at each scale-space point:

  2 2

max min, ,x y tN   

14 / 89

N(x,y,t) Original image

To our assistance, we have a function that measures the

ridge strength at each scale-space point:

  2 2

max min, ,x y tN   

15 / 89

 

 

3

max

max max

Let , , : be a linear scale-space image.

Let be the principal eigenvalue of the Hessian matrix of with respect

to at point . Let be an eigenvector corresponding to .

A scale-s

L x y t

L

x, y x, y,t v







 

 

 

 

, max

max

pace point is a if the following

conditions are satisfied:

(for bright ridges)

The strength function , , obtains a local maximum along

the -axis at .

1. , , , 0

2. 0

 3.

x y

x, y,t ridge point

x y t

t x, y,t

L x y t v

N



 



16 / 89

17 / 89

18 / 89

Suppose we would like apply a certain numerical differentiation filter
on the image, e.g. Sobel, in a discrete scale S. We apply an enlarged
version of the filter, with each element of the original filter inflated to
a square of S x S pixels, containing the value 1/S^2, in order to obtain
uniform averaging.

-1 0 1

19 / 89

-2 0 2

-1 0 1

Differentiating in this method can be implemented very efficiently
using Integral Image:

By taking linear combinations of the integral image II(x,y) at different
points, we can sum square regions on the image with time complexity
O(1).

This property enables us to calculate the scale-space derivatives very
efficiently – with time complexity O(k) whereas k is the number of
elements in the numerical differentiation filter.

   , ,
u x
v y

II x y I u v dudv



 

20 / 89

Pros:

• Efficient implementation using Integral Image.

• Ridges in different scales which share the same intensity

produce the same magnitude of derivative when applied in their

appropriate scales.

Cons:

• This method is not rotation-invariant.

• Uniform averaging is a bit less informative than Gaussian

averaging.

21 / 89

Since we are interested at curves, and not points, we need to use a
tracking algorithm that would track the zero-crossing curves of
the function , and take only those which have .

For this we need to develop formulae for and .

, max,x yL v
max 0 

maxv max

   

 

2 2

max

1

max

max

, / 2,

2

Since is defined up-to a multiplication by 1 , we have two

equivalent formulae for obtaining the direction v , each is a

negative multiple of the other:

xx yy xysign I d L L S d L

L
S

v

v





     


 



  

 2

,

,

xy

xy

d S L

L d Sv







  
22 / 89

First try at ridge tracking:
In order to track the ridges, we can seek
the zero-crossings of the functions

Original image

1f

1 21 2
 or , ,f fI v I v  

2f

23 / 89

Original image

1f 2f

Second try:
Let’s choose at each point the one of
the two functions which obtains a
larger absolute value:

1 2max ,arg max f f if f

maxf

24 / 89

Original image

1f 2f

Second try:
That seemed to do the trick.
But what about this image?

maxf

25 / 89

Original image

1f 2f

Second try:
…and this?

maxf

26 / 89

There is a deeper reason that we always get it wrong in at least one
of the functions. R. Adar has provided us with an intuitive proof
that we cannot base our ridge tracking on the zero-crossings of a
single function f. That is, we cannot construct an algorithm that
given an arbitrary image I, tracks ridges by searching for zero-
crossings of a single function f, that is derived from the image by
using local differentiation operators.

Suppose we would like to search this image for ridges:

27 / 89

Obviously, we expect the result to look something like this:

28 / 89

A function which has that curve as its zero-crossing, is w.l.o.g
positive in the interior of the curve, and negative outside.

29 / 89

Let us look closely at two neighbourhoods in the original image and
the function f.

30 / 89

Both neighbourhoods look the same on the original image, but are
different in f, even though f was obtained only by local
differentiation, and that is impossible.

31 / 89

How we will choose the right vector ?

v1 v1

choose v1

v2 v2

choose v2

v1 v2

choose
 1 2,

arg max
v v

v

32 / 89

Where is the zero-crossing located ?

via linear interpolation the zero crossing is here

0L v   0L v  
x

33 / 89

By using the previous rule on a grid we get:

x

x
x

x

x
x x

x

x

x

x

34 / 89

We connect the zero-crossing points by edges

x

x
x

x

x
x x

x

x

x

x

35 / 89

In case of ambiguity we create all the possible edges

X

X

X

X

36 / 89

We do it separately for every scale

37 / 89

We do it separately for every scale

scales 38 / 89

 Accumulating data about connected components by using
 Union-Find data structure during the graph construction.
 Integrating the strength function over each connected component in
 order to evaluate its quality.
 Prioritizing scale-space points by their component strength and their
 strength.
 Seeking the scale-space neighborhood for scale jump opportunities.
 The scale is proportional* to the ridge width, so we can determine
the width from the scale.
 Keeping a record of ridge ownership over voxels in their domain.
 Preprocessing is performed independently at each scale, so it can be
parallelized.

* Up to a function that depends on the angle, due to non-rotational-invariance.

39 / 89

40 / 89

41 / 89

42 / 89

43 / 89

44 / 89

45 / 89

46 / 89

47 / 89

Here is an example of a typical aerial photo:

2048x2048

pixels

48 / 89

All the ridge points from all scales together:

Scale:

3

25

49 / 89

All the ridge points from all scales together:

Scale:

3

25

50 / 89

Candidate points (brightness by point strength)

Scale:

3

25

51 / 89

Candidate points (brightness by connected component grade)

Scale:

3

25

52 / 89

100 best ridges

Scale:

3

25

53 / 89

100 best ridges

Scale:

3

25

54 / 89

100 best ridges. Brightness by ridge grade.

Scale:

3

25

55 / 89

56 / 89

57 / 89

58 / 89

59 / 89

60 / 89

61 / 89

62 / 89

63 / 89

64 / 89

65 / 89

66 / 89

67 / 89

68 / 89

69 / 89

100

best

ridges

70 / 89

71 / 89

Small objects that lie within the road essentially prevent it from being a

ridge.

72 / 89

Bright ridges outside of the road also interfere with the ridge

73 / 89

Ridges which are related tend to drift when changing scale. When

changing scale, we choose heuristically which ridge to continue

tracking from. In this particular example, it caused us to continue

tracking along the wrong ridge, which has lead us to a dead end.

74 / 89

While tracking the ridge, elongated regions with small height difference

relative to their surrounding pretend to be a ridge. Even though these

points get a low grade, they might be attached to real ridges with a high

grade. The algorithm starts from the good region and continues to the bad

one.

75 / 89

Solution: We have a criteria that compares the height resulting in stepping

forward and stepping aside, which is scale-invariant, and can be applied

with different levels of strictness.

76 / 89

However, no level if strictness is perfect for the entire image.

77 / 89

However, no level if strictness is perfect for the entire image.

78 / 89

However, no level if strictness is perfect for the entire image.

79 / 89

80 / 89

Resolution\
nScales

256x256 641x635 1024x1024 2048x2048

9 1 5.8 17.5 93.3

12 1.35 7.2 21.4 143.4

17 1.85 9.7 30.5 195.1

Theoretically the time complexity is:

The algorithm performs a constant number of passes on each voxel during

the preprocessing stage (except for using the Union-Find) and a constant

number of passes on each zero crossing point during the tracking stage.

Practically (in seconds):

  *number of voxels number of ridgepointsO log

These results were obtained using this hardware: Intel Core2 Duo 2.20Ghz,

4Gb RAM, running on Linux (Ubuntu 11.04).
81 / 89

Resolution\
nScales

256x256 512x512 1024x1024 2048x2048

9 0.2 1 1 9

4 28

18 107

12 0.25 2

1.3 9.5

6 38

25 155

17 0.7 4

2 17

8 59

36 243

Let us compare the scale-space derivative calculation speed with our method

vs. Lindeberg’s method (with Gaussian derivatives and convolution).

In the following table we calculated the 5 derivatives in different scales with

both methods and compared their time in seconds :

Black – our result .

Red – Lindebergs.

These results were obtained using this notebook: Intel Core2 Duo 2.50Ghz,

4Gb RAM, running on WindowsXP 32 bit.
82 / 89

83 / 89

1. Using a pyramidal image representation in order to perform calculations

in different scales:

84 / 89

2. Propagating discoveries of ridges by local feature matching similarity.

85 / 89

3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow.

86 / 89

3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow.

87 / 89

3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow.

88 / 89

Ridge strength function for small scale:

Without flow With flow

3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow.

89 / 89

Ridge strength function for large scale:

Without flow With flow

1. Lindeberg,T. “Edge detection and ridge detection

 with automatic scale selection” , International journal

of Computer Vision, 30 ,2 ,pp 117-154 , 1998.

2. Witkin, A. P. "Scale-space filtering", Proc. 8th Int.

Joint Conf. Art. Intell., Karlsruhe, Germany,1019–

1022, 1983.

3. Koenderink, Jan "The structure of images", Biological

Cybernetics, 50:363–370, 1984.

90 / 89

Renen (our supervisor) – thank you for your support and

useful advice during all this time and hard work.

Also a special thanks for our lab manager, Aram

Movsisian, for providing us all things we needed

along the way.

Mika (Tal’s girlfriend) – thank you for your support during

the hard times.

91 / 89

Renen (our supervisor) – thank you for your support and

useful advice during all this time and hard work.

Also a special thanks for our lab manager, Aram

Movsisian, for providing us all things we needed

along the way.

Mika (Tal’s girlfriend) – thank you for your support during

the hard times.

!תודה

92 / 89

