


• We would like to detect roads in 
aerial photos by using ridge 
detection. 

• Due to different road widths, we 
would like to detect ridges in 
different scales. 

• In [1] T. Lindeberg (1996) proposed a 
scale-space ridge detection with 
automatic scale selection by using 
Gaussian derivatives. 

• We propose a faster approach that 
approximates Lindeberg’s solution, 
plus some additions. 
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Intuitively, a ridge is a long region which is 
brighter than its external surrounding. 
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If we look at the image as a surface, we aim to 
find its watersheds: 
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(for bright ridges)

In order to set the scale, we convolve the image I with a Gaussian

kernel prior to differentiating.
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Problem:  A single scale cannot capture all the 
ridges. 

A small scale is good for the fingers, but leaves small unwanted peaks and 

summits on the arm. 8 / 89 



Problem:  A single scale cannot capture all the 
ridges. 

A larger scale is good for the arms, but wipes out the fingers. 

9 / 89 



So why not perform single-scale ridge detection at 
each scale separately and combine the results? 

A ridge’s width can change along its path. 
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• In [1] Lindeberg used Gaussian smoothing for 

defining the scale-space according to Witkin and 

Koenderink [2,3].  

• For a given image I(x,y), its linear (Gaussian) scale-

space representation is a family of signals L(x,y;t) 

defined by the convolution of I(x,y) with the Gaussian 

kernel: 
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Images at different scales: 
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To our assistance, we have a function that measures the 

ridge strength at each scale-space point: 

Original image N(x,y,t) in large scale N(x,y,t) in small scale 
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Original image N(x,y,t) 

To our assistance, we have a function that measures the 

ridge strength at each scale-space point: 

  2 2

max min, ,x y tN   
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N(x,y,t) Original image 

To our assistance, we have a function that measures the 

ridge strength at each scale-space point: 
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Let , , : be a linear scale-space image.

Let be the principal eigenvalue of the Hessian matrix of  with respect 

to  at point .  Let be an eigenvector corresponding to .
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Suppose we would like apply a certain numerical differentiation filter 
on the image, e.g. Sobel, in a discrete scale S. We apply an enlarged 
version of the filter, with each element of the original filter inflated to 
a square of S x S pixels, containing the value 1/S^2, in order to obtain 
uniform averaging. 
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Differentiating in this method can be implemented very efficiently 
using Integral Image:  
 
 
 
By taking linear combinations of the integral image II(x,y) at different 
points, we can sum square regions on the image with time complexity 
O(1).  
 
This property enables us to calculate the scale-space derivatives very 
efficiently – with time complexity O(k) whereas k is the number of 
elements in the numerical differentiation filter. 
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Pros: 

• Efficient implementation using Integral Image. 

• Ridges in different scales which share the same intensity 

produce the same magnitude of derivative when applied in their 

appropriate scales. 

 

Cons: 

• This method is not rotation-invariant. 

• Uniform averaging is a bit less informative than Gaussian 

averaging. 
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Since we are interested at curves, and not points, we need to use a 
tracking algorithm that would track the zero-crossing curves of 
the function               , and take only those which have             .  

For this we need to develop formulae for         and       .   
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First try at ridge tracking: 
In order to track the ridges, we can seek 
the zero-crossings of the functions 

Original image 

1f

1 21 2
 or  , ,f fI v I v  

2f
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Original image 

1f 2f

Second try: 
Let’s choose at each point the one of 
the two functions which obtains a 
larger absolute value: 

1 2max ,arg max f f if f

maxf
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Original image 

1f 2f

Second try: 
That seemed to do the trick. 
But what about this image? 

maxf
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Original image 

1f 2f

Second try: 
…and this? 

maxf
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There is a deeper reason that we always get it wrong in at least one 
of the functions. R. Adar has provided us with an intuitive proof 
that we cannot base our ridge tracking on the zero-crossings of a 
single function f. That is, we cannot construct an algorithm that 
given an arbitrary image I, tracks ridges by searching for zero-
crossings of a single function f, that is derived from the image by 
using local differentiation operators. 
 
Suppose we would like to search this image for ridges: 
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Obviously, we expect the result to look something like this: 

28 / 89 



A function which has that curve as its zero-crossing, is w.l.o.g 
positive in the interior of the curve, and negative outside. 
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Let us look closely at two neighbourhoods in the original image and 
the function f.  
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Both neighbourhoods look the same on the original image, but are 
different in f, even though f was obtained only by local 
differentiation, and that is impossible. 
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How we will choose the right vector ?  

v1 v1 

choose v1 

v2 v2 

choose v2 

v1 v2 

choose  
 1 2,

arg max
v v

v
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Where is the zero-crossing located ?  

via linear interpolation the zero crossing is here  

0L v   0L v  
x 
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By using the previous rule on a grid we get:  
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We connect the zero-crossing points by edges  
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In case of ambiguity we create all the possible edges   

X 

X 

X 

X 

36 / 89 



We do it separately for every scale 
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We do it separately for every scale 

scales 38 / 89 



 Accumulating data about connected components  by using         
 Union-Find  data structure during the graph construction. 
 Integrating the strength function over each connected component in 
 order to evaluate its quality.  
 Prioritizing scale-space points by their component strength and their 
 strength.  
 Seeking the scale-space neighborhood for scale jump opportunities.  
 The scale is proportional* to the ridge width, so we can determine 
the width from the scale. 
 Keeping a record of ridge ownership over voxels in their domain.  
 Preprocessing is performed independently at each scale, so it can be 
parallelized. 
      

* Up to a function that depends on the angle, due to non-rotational-invariance. 
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Here is an example of a typical aerial photo: 

2048x2048 

pixels 
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All the ridge points from all scales together: 

Scale: 

3 

25 
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All the ridge points from all scales together: 

Scale: 

3 

25 
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Candidate points (brightness by point strength) 

Scale: 

3 

25 
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Candidate points (brightness by connected component grade) 

Scale: 

3 

25 
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100 best ridges 

Scale: 

3 

25 
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100 best ridges 

Scale: 

3 

25 
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100 best ridges. Brightness by ridge grade. 

Scale: 

3 

25 
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100 

best 

ridges   
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Small objects that lie within the road essentially prevent it from being a 

ridge.   
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Bright ridges outside of the road also interfere with the ridge 
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Ridges which are related tend to drift when changing scale. When 

changing scale, we choose heuristically which ridge to continue 

tracking from. In this particular example, it caused us to continue 

tracking along  the wrong ridge, which has lead us to a dead end. 
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While tracking the ridge, elongated regions with small height difference 

relative to their surrounding pretend to be a ridge. Even though these 

points get a low grade, they might be attached to real ridges with a high 

grade. The algorithm starts from the good region and continues to the bad 

one. 
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Solution: We have a criteria that compares the height resulting in stepping 

forward and stepping aside, which is scale-invariant, and can be applied 

with different levels of strictness. 
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However, no level if strictness is perfect for the entire image. 
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However, no level if strictness is perfect for the entire image. 
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However, no level if strictness is perfect for the entire image. 
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Resolution\ 
nScales 

256x256 641x635 1024x1024 2048x2048 

9 1 5.8  17.5  93.3  

12 1.35 7.2  21.4  143.4  

17 1.85 9.7  30.5  195.1  

Theoretically the time complexity is: 

  

 
 

The algorithm performs a constant number of passes on each voxel during 

the preprocessing stage (except for using the Union-Find) and a constant 

number of passes on each zero crossing point during the tracking stage.  

 

Practically (in seconds):  

 

  

  *number of voxels number of ridgepointsO log

These results were obtained using this hardware: Intel Core2 Duo 2.20Ghz, 

4Gb RAM, running on Linux (Ubuntu 11.04). 
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Resolution\ 
nScales 

256x256 512x512 1024x1024 2048x2048 

9 0.2     1 1    9 
  

4    28 
  

18     107 
 

12 0.25    2 
 

1.3    9.5 
 

6    38 
 

25    155 
 

17 0.7    4 
 

2     17 
 

8     59 
 

36     243 
 

Let us compare the scale-space derivative calculation speed with our method 

vs. Lindeberg’s method (with Gaussian derivatives and convolution).  

 

In the following table we calculated the 5 derivatives in different scales with 

both methods and compared their time in seconds :  

Black – our result .  

Red – Lindebergs.  

 

  

These results were obtained using this notebook:  Intel Core2 Duo 2.50Ghz, 

4Gb RAM, running on WindowsXP 32 bit.  
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1. Using a pyramidal image representation in order to perform calculations 

in different scales: 
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2. Propagating discoveries of ridges by local feature matching similarity.   
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3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow. 
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3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow. 
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3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow. 
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Ridge strength function for small scale: 

Without flow With flow 



3. Enhancing ridges prior to detection using Beltrami flow or another ridge-

enhancing flow. 
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Ridge strength function for large scale: 

Without flow With flow 
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