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Cell counter project
1. Introduction

a. Problem description
Some routine medical tasks may be automated to increase their 
efficiency and diminish their dependency on the human factor. One of 
such tasks is cell counting. In medical research hundreds of gray-level 
cell images are taken in order to count them manually. In a typical 
image, e.g. image 1, there are tens of cells. Nowadays a researcher has 
to count these cells manually, which is a monotonous time consuming 
procedure. A computerized automatic cell counter is essential to 
simplify and standardize this task.

Image 1

An example of input image

At the first sight the task is challenging. As one may see in image 1, 
the cells are scattered in different sizes, shapes, angles and gray-level 
intensities. They also may partially overlay each other. 
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The images contain noises which make the task even more complex. 
                        The most noticeable noise phenomenon is a dark, mostly circular, area 

surrounded by a bright border. We denominate them 'noise blobs'.

                               5 noise blobs                                       2 noise blobs overlay a cell

A noise blob may be somewhat similar to a cell and it can overlay a 
cell. That makes the detection and distinction process very difficult.

b. Goal of the project
We aim to introduce a cell detection algorithm which counts the cells 
in a given image “accurately enough”. The algorithm should receive a 
gray-level image and output the estimated number of cells. Ideally, the 
error should be less than 5% from the number counted by a human 
operator.

c. Brief summary of this work
This work introduces a fast and simple method for cell counting. The 
obtained accuracy is around 8%, which is yet to achieve the declared 
goal. However, this method allows a fast assessment of the cell 
numbers and if needed, may be succeeded with more precise cell 
detection algorithm based on the obtained results for specific locations. 

Shape detection methods could also be considered by studying the 
shapes dissimilarities of noise blobs and cells.



2. The proposed approach
a. Brief description of the approach principles.

Looking at example images, e.g. image 1, one can see that the noise 
blobs and the cells are darker than the background. That tempts us to 
base our initial detection process on intensity levels. But how can we 
distinguish between the noise blobs and the cells?
Looking at the images one can notice that noise blobs and cells differ 
in 2 properties – intensity level and shape. The noise blobs tend to be 
darker and while their shape is circular, the cells tend to be a very 
curved elliptic shaped, even lined.
Computing the shape of a dark object is very difficult, all the more 
considering the dark objects are overlaying each other and have 
different angles and shapes. It's much easier to exploit the intensity 
difference between the noise blobs and the cells.
The noise blobs are the darkest objects in the image. That means our 
detection process is able to filter the noise blobs out and leave us with 
a "clean" image so that our algorithm can count the cells in an "ideal 
environment".
By experiments and looking at images, we have noticed that the level 
of general brightness is not constant. For example, in image 1, the 
center is brighter than the sides and corners. Our noise blob sifting is 
based on intensity level filtering, thus we must take the local general 
brightness level into account. For example, the grey level threshold of 
noise blobs in the center of image 1 is higher than in its corners.

Image 2



Pixels which are darker than the locally-adapted threshold are marked in red.
Image 2 shows that the simple filtering which is based on intensity 
level recognizes the very most of the noise blobs. However, it doesn't 
cover them well.

Simple grey level filtering result
We see in the image that around the red pixels there are still dark 
pixels. They are part of the noise blob but they are not dark enough to 
be marked by the intensity level based filter. These are dangerous 
pixels because their intensity level is similar to the intensity levels of 
the cells. We want to cover these pixels as well because we want to 
have a "clean" image after wiping out, ideally, all the pixels which 
belong to noise blobs.
We want the marker to go at least as far as the border between the dark 
part of the noise blob and the bright area which surrounds it.
We need an edge detector to mark the borders for us. We chose to use 
Canny's edge detection algorithm1.

1 Canny, J., A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine 
Intelligence, 8:679–714, 1986.



The blue pixels are Canny detector marks
Our marker picks a pixel in the red area, which is the result of the 
simple threshold-based filtering marker, and flood-fills2 from there 
until it reaches Canny's marked pixels. It yields better noise blobs 
coverage.

Flood-fill marking results in better coverage
One still sees the bright ring which surrounds the marked dark area. 
Although these are bright pixels which cannot confuse the detection 
process with the dark cells, we want our image to be "clean" of pixels 
which belong to noise blobs.
Empiricism showed us that whatever the surface of the noise blob is, 
the width of the white ring is similar. Utilizing it we apply a simple 
dilation operator on the marked images.
We received a satisfying-enough noise blob coverage. The next phase 
of the detection process can assume a clean image, because it takes 
into consideration only unmarked pixels.

Marking result after dilation
That was the 1st phase of our detection process algorithm. Its purpose is 
to wipe the noise blobs out and provide the next phase with a "perfect" 
working environment.

Image 3

2 http://en.wikipedia.org/wiki/Flood_fill  

file:///root/convert/apache-tomcat-6.0.20/temp/ http://en.wikipedia.org/wiki/Flood_fill


Marking result of the 1st phase
After sifting the noise blobs, most of the dark objects of the image are 
the cells. Does it remind something? Before the 1st phase the noise 
blobs were the darkest objects. Before the 2nd phase, these are the cells 
we need to detect. Thus, shall we apply the same mechanism yet again, 
this time ignoring the marked pixels? 
We can do that, but we cannot ignore the difference between noise 
blobs and cells. Cells are more complex.

An example of a cell with a broken open boundary
Since the grey level difference between the cells and the background is 
smaller than between the noise blobs and the background, Canny's 
edges are broken open. That causes the flood-fill algorithm to "slip 
out" of the cell which results in a very poor cell coverage.
How can we avoid these "slip outs"? We want the flood-fill algorithm 
to continue spreading along the cell even if there are some holes in its 
sides. That means we want a prioritized flood-fill spreading, i.e. we 
want to prioritize the pixels along the cell over the pixels which are 
perpendicular to the cell. By saying "along the cell" we imply the cell 
has a direction, a slope. But how do we compute its slope? We don't 
even know this cell, because we're only about to detect it!
We can only estimate its slope. We can do it using the simple initial 
information we have about the cell – the threshold-based marked 



pixels. With these pixels we compute the "center of mass" pixel, i.e. 

the ( ),average x y
, then we take into consideration the other marked 

pixels relatively to the "center of mass", to compute the estimated 
slope. 
Prioritizing the flood-fill algorithm doesn't prevent the flood-fill from 
spreading all over the image through the boundary holes. We have to 
take care of it. The broken open boundary issue occurs also in noise 
blobs, though to a much smaller extent. We want the flood-fill marking 
to reach Canny's edges, but since we probably have holes, we don't 
demand all of the flood-filling pixels to touch the boundary. We 
demand that at least certain percentage out of all the flood-filling 
pixels sits on the boundary, and then we stop the flood-fill spreading. 

Image 4

Red – phase 1 result. Green – phase 2 result.
The marking hit ration of the cells is obviously far from being perfect. 
A discussion of remaining problems will be held in 2f. 

b. Reasons to choose the approach
The algorithm flow we offer is modular; it allows us to tune or 
improve each of the 2 phases independently, even though 1st phase 
result effects 2nd phase as the latter avoids area marked by the former.
The separation to phases simplifies the whole process, since the 2nd 

phase assumes the dark areas may belong to cells only because the 1st 

phase already marked the noise blobs them and the 2nd phase avoid 
these marked areas. The 1st phase allows the 2nd phase to work in a 
much more convenience environment.
The threshold test used to identify pixels suspected to belong to a noise 



blob or a cell is a simple comparison operation which focuses the 
workload on the dark areas.
It was also the simplest way to identify noise blobs quickly because 
they tend to be very dark compared to their surroundings.
The shapes of the cells is very varied, they overlay and are overlaid 
and the length-width proportion also varies, this it was impractical for 
us to base the detection process on shape.

c. The proposed cell counting method.
Our cell counting algorithm clearly fails to achieve the accuracy 
needed, as it reports on a number of cells which is several times the 
real number of cells. However, our RoC curves, as can be seen in sub-
chapter 4e, suggest the ratios between the number of False Negative 
marks and False Positive marks to the number of cells counted by lour 
algorithm tend to be similar. We utilized to implement an estimation 
method which produces much better results. The method is described 
in sub-chapter 4f.

d. Problems
We encountered several problems developing the cells counter.

The broken open Canny's edges occurred in both phases, i.e. in noise 
blobs and in cells. The flood-fill algorithm "slips out" of the dark 
element (which can be either a noise blob or a cell) and stops only after 
covering the whole image. The grey level gap between the cell and the 
surrounding may be very blurred so the Canny boundary often tends to 
be broken open.
Then noise blobs usually have 2 borders; one between the dark part 
and the bright ring which surrounds it, and another one between the 
ring and the background. We initially wanted to perform a 2nd flood-
filling in the 1st phase, so the flood-fill keeps spreading until the 2nd 

border, thus covering and marking the noise blob accurately. 
Unfortunately, the 2nd border is considerably more broken and open so 
we opted for another solution.

Our detector is based on threshold filtering. Looking at the images one 
can see that the grey level of the background and the dark elements 
vary. It varies inside an image and it also varies between images; some 
images are brighter than others. 

In the 2nd phase the initial threshold-based marker marks a lot of very 
small areas, some of them consist of just a few pixels. Areas like these 
are very unlikely to form a cell and we didn't want our detector to 
count them as one.

e. Solutions found
The constant values in this chapter were chosen empirically; We tried 
different values and analyzed the results to get the best values.



The broken open Canny's edges are solved by enforcing 2 flood-filling 
stopping criteria's – ratio and size. The ratio is the number of flood-
filling pixels sitting on the boundary divided by the overall number of 
flood-filling pixels. Ratio of 0.65 in 1st phase and 0.73 in 2nd phase are 
good values. The size is the surface of current flood-fill, i.e. the 
number of pixels the current flood-fill run already marked. Looking at 
images it's obvious that there is a connection between the size of the 
dark element and the number of pixels marked by the initial threshold-
based marker. In 1st phase the area size upper threshold is 6 times the 
number of marked pixels (by the threshold-based marker). In 2nd phase 
it 2 times. It makes sense when looking at cells and noise blobs; in 
cells the dark area takes most of the cell's surface, while the noise 
blobs tend to have a wide bright ring around the dark area.
When the flood-fill algorithm reaches either of the stopping criteria's, it 
stops spreading.
In the 1st phase we wanted to cover the noise blobs well by flood-
filling further until the 2nd border, but the border is too fragile, so we 
opted to apply the dilation operator. The ring's width proved to be very 
similar regardless the surface of the noise blob. The usage of dilation 
operator proved to be fast and accurate enough.

We couldn't use a constant threshold in the threshold-based marker all 
over the image, so we decided to divide the image to blocks. Each 
block is assigned a constant threshold value. The size of each block is 
50X50 and the formula to compute its value is described in 2c. 50X50 
are small enough to provide us with a good brightness level adaptation. 
The blocks in the center of the image usually have higher threshold 
values than the corner blocks.

We used simple filtering to eliminate tiny marked areas in the 2nd 

phase, because they are unlikely to be cells. We decided the algorithm 
ignores all areas whose surface is not bigger than 45 pixels. It spared 
the algorithm from many local dark phenomena's which are not cells.

f. Remaining problems
Unfortunately we still have major problems. 

The image consists of cells which are almost as bright as the 
background. 

An example of a bright cell.
Our detector misses such cells because it is based on grey level 
differences.
For similar reasons our algorithm misses noise blobs or confuses them 
with cells. A noise blob which is too bright for the 1st phase but dark 
enough for the 2nd phase will be considered as a cell (unless it's too 
small).



An example of a noise blob which is considered to be a cell in our detector.
Obviously, the opposite case is also possible – a relatively dark cell 
may be marked as a noise blob in the 1st phase.

Our detector also may mark 2 distinct areas which belong to the same 
cell. It can happen in long cells, especially if they consist of multiple 
dark areas separated by relatively bright areas.

A cell which is marked twice
Our detector counts such cells as multiple cells, depends on the number 
of marks.

Most of the problems occur because our detector starts its work with a 
grey-level based filtering.

3. Implementation
a. Adaptive threshold 

Algorithm 1: 
Input: Image I, Threshold T, holes matrix H. 
           H is a matrix of the same dimension as I. H(x,y)==255 if (x,y) is
           a marked pixels which shouldn't be taken into consideration.
i. Divide the image into 50X50 blocks Bi,j.
ii. Find the average gray-level value of each block Mi,j = <Bi,j>. 

Take into consideration only pixels (x,y) for which H(x,y)!
=255.

iii. Mark all the pixels which gray-level is under the adaptive 
threshold I(x,y) < Mi,j-+T.



The threshold is locally adapted; the image is divided into blocks, each 
block has its own threshold. The threshold is basically a pixel average 
of the block minus a constant value given by the user.

b. Flood fill algorithm, 
Algorithm 2:
Input: Image I, surface threshold ST, (row,col).
i.          Create (x,y)'s container and put there (row,col).
ii. Let n be the size of the container, m be 0 and s be 0.
iii. For 1 to n

1. Pop the 1st pixel from the container to be (x,y).
2. If (x,y) sits on Canny edge or I's boundary, increment m.
3. If (x,y) sits on Canny edge go to next iteration.
4. for each 4-neighbour of (x,y), (nx,ny)

a. If (nx,ny) inside I and unmarked, add it to the 
container and mark it.

iv. Let n be the size of the container.
v.          If m/(m + n) > 0.73 then stop.
vi. s = s + n.
vii. If s>ST then stop.
viii. Go to (iii).

In steps (v) and (vii) we have the stopping criteria's we mentioned in 
the previous chapter. 

c. Noise detection algorithm.
Input: Image I, Noise threshold NT, Cell threshold CT, Cell surface 
threshold S.
i.          Call Algorithm 1 with image I, threshold NT and no holes

         matrix.
ii. Label 8-neighbourhood connected components in the resulting

         marked matrix of (i).
iii. For each connected component do:

1. Find the mass center (rc,cc) which is (mean row, mean 
column).

2. Call Algorithm 2 with 6 times the surface of the 
component as a surface threshold, and (rc,cc).

iv. Apply the dilation operator on the result of (iii).

This is the 1st phase of our detector.

d. Flood fill algorithm, directional flow modification.
It's similar to algorithm 3, but cell-slope-oriented. The container here 
keeps complex elements; each element contains pixel coordinate (x,y) 
and a weight value.
Algorithm 3:
Input: Image I, surface threshold ST, cell angle CA, (row,col).



i.          Create a container and put there (row,col) and any value as
         weight.

ii. Let n be the size of the container, m be 0 and s be 0.
iii. For 1 to n

1. Pop the 1st pixel from the container to be (x,y).
2. If (x,y) sits on Canny edge or I's boundary, increment m.
3. If (x,y) sits on Canny edge and it's not the 1st iteration of 

(iii), go to next iteration.
4. If it's not the 1st iteration of (iii), let a be the angle of the 

line stretched from (row,col) to (x,y).
5. for each 4-neighbour of (x,y), (nx,ny)

a. If (nx,ny) inside I and unmarked, add it to the 
container and and |CA – a| as the weight value.

b. Mark it.
iv. Sort the container according to the weights, in ascending order.
v.          Let n be the size of the container.
vi. If m/(m + n) > 0.65 then stop.
vii. s = s + n.
viii. If s>ST then stop.
ix. If n>8 then n = n/2.
x.          Go to (iii).

We use the condition in (ix) because we don't want the flood-fill spread 
to be slope-oriented if we have too few pixels in the container. If we 
have only few pixels, we want to spread them all.
In each spreading iteration, having a set of open pixels (i.e. spreading 
pixels); we only spread the half of them which are closer to the slope of 
the cell.

e. Cell detection  algorithm
Input: Same as noise detection algorithm from (C).
i.          Call Algorithm 1 with image I, threshold CT and the markings

         of Noise detection algorithm(ie 1st phase) as the holes matrix.
ii. Filter out marked areas which are smaller than S.
iii. Label 8-neighbourhood connected components in the resulting

         marked matrix of (ii).
iv. For each connected component do:

1. Find the mass center (rc,cc) which is (mean row, mean 
column).

2. Compute (str,stc) = (rows standard deviation, columns 
standard deviation).

3. Compute the cell slope as atang(stc/str).
4. Call Algorithm 3 with 2 times the surface of the 

component as a surface threshold, the above cell slope 
and (rc,cc).

The resulting marked areas are the detected cells.



This is what we referred to as a 2nd phase.
Here we use the pixels which are marked by the simple threshold-based 
filter in order to approximate the cell's slope.

4. Experiments
a. Available images

Here we show 3 sample images on which we experimented our 
algorithm most. The 1st image is presented in this document as Image 
1. The other two are presented here.

Image 5



Image 6



b. Noise markings
Here we demonstrate noise removal on our 3 test images. Noise 
removal of Image 1 is marked in red in Image 4.

Image 5 markings – 



Image 7

And Image 6 markings –
Image 8



c. Manual markings
We received our sample images without additional information 
regarding the number or identity of the cells. We had to identify the 
cells ourselves by looking at the images. In order to make some 
statistics and compare results numerically, we manually-marked the 
cells in our 3 test images so that we can estimate how well our 
algorithm performed to detect those cells.

The elements which we considered to be cells are marked with blue 
dots. Each cell is marked with a single dot. Here are the manual 
markings, in this order, of the image Image 1, Image 5 and Image 6.

Image 9

Manual markings of Image 1

Image 10



 
Manual markings of Image 5

Image 11

 
Manual markings of Image 6



d. Automatic markings
Here we show the cell markings by our algorithm. We recall that 
running our algorithm with a cell threshold CT means the simple 
threshold based filter uses a threshold whose value is the local average 
gray-level minus CT.

The cell marking of Image 1 can be seen in green in Image 4.  It was 
run with CT==18.
Cell markings of Image 5 and Image 6, respectively, with the same CT 
value are shown down here. 

Image 12

Cells markings of Image 5



Image 13

 
Cells markings of Image 6

We want to present a couple more cells marking of Image 6 with 
different cell threshold. 



Image 14

Cell marking of Image 6 with cell threshold value of 8

Image 15

 
Cell marking of Image 6 with cell threshold value of 28



As expected, the higher the threshold value is, the more cell markings 
we have, but it also means the algorithm incorrectly marks dark 
elements as cells. If the cell threshold value is low, the algorithm 
misses more true cells.

So what are the best cell threshold values? Let's see some RoC curves.

e. RoC curves for different images.
Different cell threshold yield different results. We created RoC figures 
for our 3 test images.

The horizontal axis represents false negatives.
The vertical axis represents false positives.
The numbers right to the circles represent the cell threshold values.

Image 1 RoC



Image 5 RoC

Image 6 RoC



f. Estimation of the true number of cells.
Here we try to correct the estimated number of the cells in the image. 
Consider RoC curves of other images. For each threshold value Ti we 
know the ratio of the detected cells to the false positive rFPi and false 
negative rFNi estimation. Then, we can use the following algorithm to 
correct our estimation:
i. For i=1,2,,N

1. Find number of cells Ei using cell detection algorithm 
3.e.

2. Correct the number of cells to be ECi = Ei-
rFPi•Ei+rFNi•Ei

ii. Output: EC = ΣECi/N.

We took 5 images to demonstrate the above estimation algorithm, 3 of 
which are our test images. For each of them we'll use the other 4 
images' RoCs to estimate the image's number of cells.
Considering the RoC values we have, we chose to use the following 4 
cell threshold values – 8, 19, 23 and 29. 

The following table shows the estimated and the true (manually 
marked) number of cells in each of the images:

Manually marked Estimation
Image 1 91 102.7381
Image 5 90 99.0235
Image 6 103 89.6815
4th image 98 95.0410
5th image 93 90.4069

The average error is 8%. The differences between our estimation and 
the manually counting are small and seem to be unbiased. We did not 
find a simple way to improve our estimation further.
Having 5 images' RoC results, we computed the ratios which can be 
used for other images.

8 19 23 29

8 19 23 29

0.0120, 0.0357, 0.0905, 0.3158

0.8112, 0.7293, 0.6978, 0.6644

rFN rFN rFN rFN

rFP rFP rFP rFP

= = = =
= = = =



5. Conclusions

We developed a cell counting algorithm which is based on gray-level filtering and 
flood-filling marking. Our 2-phased algorithm is simple and fast.
However, our cell counting algorithm implementation results in numbers which 
are several times the true number of cells in the image. Noticing the mistakes are 
similar over several test images we offered a method which roughly estimates the 
true number of cells. The accuracy we achieved may be sufficient for many 
applications. 

Further methods could be used to improve the accuracy. Studying the statistical 
relations between the estimated values and the true values over many test images 
may suggest an addition to our estimation method, which reduces the mistake 
expectancy.
More complex detection tools may be used; the shapes of the noise blobs and the 
cells may be better studied in order to improve the distinction between them by 
using shape detection methods.
More local detection may be adopted. Collecting local characteristics such as 
brightness, contrast between the dark elements and the environment and even the 
severity of background noise may all be taken into consideration to produce a 
complex local detection.
These suggestions are beyond the scope of our work.



Appendix 1.
Software documentation

Our algorithm is implemented in Matlab3. Here we describe the functions of 
which our cell detector consists. 

function [markedImageOut] = MarkAdaptedAreas(image, threshold, 
holes)

This function corresponds exactly to the adaptive threshold algorithm described in 
3a.

function [MarkedImageOut] = FillDirtArea(MarkedImageIn, edges, 
area_size_threshold, row, col)

This function does exactly what is described as the noise blobs flood-fill algorithm 
from sub-chapter 3b. The parameter edges is a 2D matrix which holds the Canny 
edges marks. It's size is exactly the size of the image matrix.

function [MarkedImageOut] = MarkCells(MarkedImageIn, edges, 
areaThreshold, origAngle, orig_row, orig_col)

This function is cells flood-fill algorithm. It differs to function FillDirtArea 
because the flood-fill spreading is cell-slope-oriented. The pseudo-code 
implementation is written in sub-chapter 3d.

function [filteredImOut] = Filter(labeledImage, sizeThreshold)

This function receives a labeled matrix(same size as images' matrix) and filters 
out the labeled areas which are smaller than sizeThreshold. It is used to filter 
out small dark elements which otherwise are going to be regarded as cells.

function [imOut, n] = CellDetection(I, blackDirtThreshold, 
cellThreshold, cellAreaSizeThreshold)

3 Numerical computing environment and fourth-generation programming language

http://www.mathworks.com/


This is our main function. It receives the image matrix, noise blob and cell gray-
level thresholds and cells' area threshold which is used as a parameter to function 
Filter. This function implements the 2 phases described in chapter 2. It uses all 
the above functions.

function [n] = EstimatedCellDetection(I)

This is the estimation function which implements the proposed cell estimation 
algorithm described in sub-chapter 4f.  This function receives the image and runs 
CellDetection function 4 times with predefined parameters values and returns 
the estimated number of cells.

Appendix 2
Algorithm running instructions

In order to run our cell counter algorithm, one should invoke CellDetection. 
Suggested parameter values may be CellDetection(I, 80, 23, 45). 
In order to run the estimated cell counter method described in sub-chapter 4f one 
just needs to call EstimatedCellDetection.


