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Abstract: It is common to model background in order to detect anomalies in a video stream 

given by a stationary camera. In this report we use a one class SVM in a block-based approach in 

order to model background.  We assume no anomalies during first 100 frames and will use them 

as a training set. We present several feature extraction methods and several variations for 

estimating the probability that a change occurred, followed by several post processing methods. 

We also analyze how the number of blocks into which the frame is divided influences the results. 

During our work we encountered problems such as different distribution of the background scene 

during train and test, or variant types of background distributions. We elaborate on how we 

coped with these problems, and finally added experimental results showing how well our 

algorithm works on several videos.  

 

1. Goal: Our objective is to use a one class SVM (OCSVM) in order to model background and thus detect 

anomalies and changes in a video stream. We restrict ourselves to a framework in which we assume a 

stationary camera and that the first N (we used N=100) frames in the video are classified as “no change” 

, this will be our training set, and the rest of the video will be our test set. The datasets that we will work 

on in this report are taken from http://www.changedetection.net/ , especially those that fit to our 

framework. For example figure 1.1 presents a frame from the train set in the video “office”, another 

frame from the test set and the expected result. 

 

 
A movie explaining our algorithm outline and showing experimental results can be found at 

http://www.youtube.com/watch?v=1OBvf8QaMXQ 

http://www.changedetection.net/
http://www.youtube.com/watch?v=1OBvf8QaMXQ


2. Algorithm outline:  The basic outline of the algorithm we will use is the following: Every frame is divided 

into several blocks (the division is the same for all frames). A feature vector is extracted for each block in 

each frame. Then, an OCSVM model is learned for each block where the first 100 frames (feature 

vectors) are used as the training set for each model. We run a cross-validation procedure to fit our 

model more accurately to the problem. Then, for each frame in the test set, we iterate over all blocks to 

find anomalies. Blocks that contain anomalies are detected using statistical tests that are based on the 

output of the OCSVM model corresponding to that block. The output of the OCSVM model is the 

distance between the tested feature vector and the hyper-plane learned by the OCSVM. Finally, a post-

processing procedure is used to refine the detection results. In pseudo-code it would look like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When implementing this basic outline, one needs to decide how many blocks to divide the frame, select 

a feature extraction method, a statistical test, and a post processing method. During our work we tried 

different feature extraction methods, various statistical tests, several frame divisions and post 

processing methods. In this report we will show our results and conclusions.   

  

Train phase: 

1. Divide every frame into small blocks. 

2. For every block, train an OCSVM using features from the first 100 

frames and run cross validation for each model obtained. 

Test phase: 

1. For every image: 

1.a For every model:  

1a.1 Calculate the distance of the features from the relevant 

block in the image 

1.a.2 Use a statistical test to decide whether the current 

distance comes from the same distribution as in the train. 

          1.b Create a binary image corresponding to every model’s decision 

         1.c Post process the result.  

 



Key terms: In the following, we are going to use some terms, which their definition is given below: 

A model – a block in the frame/image, and its corresponding decision rule obtained by training an 

OCSVM. 

A batch of frames – several sequential frames from the video that are taken usually when trying to 

estimate the distribution of the data around the middle frame. 

p-value – A parameter returned by the statistical test, between 0 and 1 indicating the probability that 

the tested data comes from the same distribution as the null hypothesis. If this parameter is small we 

decide that there was a change. 

Distance – the distance of a feature vector from a hyper-plane learned by the OCSVM  

 

3. Variations during development: In this section we will elaborate on the changes made till we reached 

the final form of the algorithm. In the beginning of our work we tried to use the high-dimensional 

Kolmogorov-Smirnov goodness of fit test. The idea was to check the distribution of the data upon ten 

OCSVMs and not only one. More specifically, we, again, divided frames into small blocks and built for 

each a model, yet every model was based upon ten OCSVMs each trained to have a certain percentage 

of outliers as explained in (1).  The ten different subspaces defined by the OCSVMs’ decision rules 

created a hierarchy where each subspace was contained by all previous ones as described in (2). Thus 

we could build a null hypothesis of the distribution of the data upon those subspaces. That is, we could 

estimate how many inliers will remain after using the decision rules one after another, according to the 

hierarchy achieved, thus creating a CDF for the train. Doing the same procedure for a batch of frames in 

the test set, we will obtain another CDF which will allow us to use the Kolmogorov-Smirnov test to see if 

the train sample and the test sample come from the same distribution. If the distributions are well 

fitted, there is probably no change, otherwise a change probably occurred. 

This algorithm was over-sensitive, and although we used cross-validation in order to fix our null 

hypothesis, and tried several feature extraction methods (some of which will be depicted later), the 

problem remained. Even after changing the algorithm to a supervised version, test frames that where 

far away (in time) from the train frames where still full of false detections. Yet, when looking at the 

results of the OCSVM that was trained with a small percentage of outliers, results were much more 

accurate when using certain features extraction methods. That led us to the conclusion that training the 

OCSVM so it would classify the train-set (which contains no changes) to have a certain percentage of 

outliers makes not much sense. Instead, training a single OCSVM to have a low percentage of outliers 

and comparing the distribution of the distances of the data-points from the hyper-plane will give us a 

much more accurate statistical test.    

 

4. Features extraction: In this section we will depict our feature extraction methods. During our work 

several feature extraction methods were tried: 

features extraction method 1: RGB-values 

features extraction method 2: Normalized image (AVG1) 

features extraction method 3:Normalized models (AVG2) 

features extraction method 4: Light simulation 



We remind that we divide our frames into blocks, and our feature extraction method should map such a 

block to a feature vector. 

 

4.1 Method 1: Features extraction method 1 is the simplest; it is just the RGB values. Each block is just 

turned to a vector containing all RGB values in it. For example, a block of 25 pixels (5x5) was 

transformed to a 25X3=75-entry vector. Figure 4.1 shows the RGB values of a certain batch of pixels 

during a video named “office”. The block is marked in red in the left image, and, according to the ground 

truth, during the video there was no change in it. The graph on the right shows the values in each frame, 

a different color for each entry in the feature vector (although not all graphs are visible here). 

 
 

One can see that although there was no change that we would like to detect in that area, the entrance 

of a man to the room did have an influence, so values in the test were far from what they had been in 

training. So here we encountered one of our main problems during this work, change of lighting. When 

the man enters the lighting is changed, leading to a change in RGB values.  Although this is really a 

change, it is not of the kind that we would like to detect. 

 

4.2 Method 2: In order to make the features more invariant to light changes we tried features 

extraction method 2, where we first normalize the frame to have a constant average of RGB values. 

This didn’t have much effect. 

 

4.3 Method 3: In features extraction method 3 we localized what we have done in method 2, that is, we 

normalized each block to have a constant average (a method we call AVG2), the features were much 

more stable. Figures 4.2 and 4.3 show the feature vectors using AVG2 (method 3)  in the same 

manner that figure 4.1 did.  

Fig 4.1 



 
 

 
 

One can see that the entrance of the man has only a small effect where there are only light changes as 

in figure 4.2, and figure 4.3 shows that these features are still sensitive to changes we would like to 

detect. 

Yet now we faced another problem, this time using the statistical test. The features were so stable 

during training so the OCSVM returned a very strict classification rule, and as a result every small change 

made a very big difference in the distribution of the data. This made it very hard numerically to 

determine an appropriate threshold from which p-value to classify a model as changed, and thresholds 

varied from different sets. For example, figure 4.4 shows how small changes in the feature vectors led to 

great changes in the distribution. 

 

 
 

The red square in the left image shows the model tested. Clearly there is no change there that we would 

like to detect, but the man’s close presence makes a little difference in the features vector. The middle 

graph presents the feature vectors. Each feature vector here has 16 entries, and is presented as a line 

Fig 4.2 

Fig 4.3 

Fig 4.4 



from 1 to 16 which goes through the corresponding values to each entry. Feature vectors from the 

training set are colored in blue and from the test set are colored in red. One can see that there is only a 

small change from test to train. The rightmost graph shows the distribution of the feature vectors in a 

CDF. The blue line corresponds to the train and the red one to the test. It shows that the two come from 

a different distribution, although actual changes are very small. Choosing a very low threshold gave very 

good precision but very low recall. Increasing the threshold damaged the precision pretty fast because it 

was harder to differ between changes in the distribution due to small noises as in Fig 4.4 and real 

changes since both changed the distribution significantly. Fig 4.5 is a precision-recall graph for method 3 

on the “office” video, showing the damage to the precision. 

 
 

4.4 Method 4: Features extraction method 4 is light simulation. It is the same as RGB-values (method 1), 

but for the training phase. In the training phase, before extracting the features we manipulate the whole 

image, simulating change of light. We will explain how we do it and simultaneously show a mini-

example. Our example will focus only on what happens in one color channel, but the same occurs in all 

color channels simultaneously.  Say our full image is the following 5x5 matrix: 

 

12 1 5 3 7 

15 4 8 20 13 

6 21 14 9 25 

5 28 18 16 10 

2 38 22 19 19 

 

 



We create a Gaussian the size of the image, with a random center. For example: 

0.535261 0.778801 0.882497 0.778801 0.535261 

0.606531 0.882497 1 0.882497 0.606531 

0.535261 0.778801 0.882497 0.778801 0.535261 

0.367879 0.535261 0.606531 0.535261 0.367879 

0.196912 0.286505 0.324652 0.286505 0.196912 

 

Is a the Gaussian formed with a center at (2,3) (in yellow), STD of 2. Each cell can be calculated using the 

formula 

2 2

2

( 2) ( 3)

2

row col

e 

  


 where row is the row of the cell and col is the column,   in this case is 

2. Then we randomly and uniformly pick a number, r, between 0.5 and 2 and transform the Gaussian 

linearly to values in int(1, )r  (that is, the interval between 1 and r). 

For example if r=2, the transformation will result in: 

1.421311 1.724564 1.853686 1.724564 1.421311 

1.510055 1.853686 2 1.853686 1.510055 

1.421311 1.724564 1.853686 1.724564 1.421311 

1.212888 1.421311 1.510055 1.421311 1.212888 

1 1.111561 1.159062 1.111561 1 

 

Now we multiply this result with our image, element by element. In our case we achieve: 

17.05573 1.724564 9.26843 5.173693 9.949175 

22.65082 7.414744 16 37.07372 19.63071 

8.527865 36.21585 25.9516 15.52108 35.53277 

6.064439 39.7967 27.18098 22.74097 12.12888 

2 42.23931 25.49936 21.11965 19 

 

Cell (2,3), for example was obtained by  8 2 , and cell (3,1) by 6 1.421311 . 

The result of this simulation is: 

If r is greater than 1, the chosen center is multiplied by r (brightened), and the most distant pixels from 

the center are unchanged. If r is smaller than 1 the most distant pixels from the center are darkened and 

the center is unchanged.  Figures 4.6 and 4.7 show the results of such a procedure on a frame from the 

video “sofa”. 



 

 
 

What led us to this feature extraction method is that even when trying other methods, such as: gradient 

maps (both in polar and Cartesian coordinates), or a directional histogram, we always ended up with 

one of the problems described above: the features change from train to test although there was nothing 

we would like to detect as changed (as in RGB features), or were too stable in the train set and thus 

causing a problem in the statistical test (as in AVG2). 

This led us to search for features with variance, so that the statistical test will work, but also have the 

same variance in the train, so that training will work. Since our main problem was change of light we 

focused on that issue. Choosing features that are invariant to lighting won’t have much variance, yet 

choosing features that do vary with different lightings will always have a different distribution on train 

and test no matter if there was a change or not. Our solution was to use RGB features but to “add 

illumination noise” to the training set by simulating change of light. If we succeed in simulating the 

change of lighting our features will vary, but the train will vary as well. And indeed, this method gave us 

the best results. 

Indeed, this method has the advantage of features with variance, when variance is even greater during 

train phase than in the test phase. This makes the algorithm less sensitive, and allows the OCSVM to use 

a lot more of the information given in the image. For example, using AVG2 maybe makes the features 

invariant to changes in lighting but also looses the information of the intensity in each color channel 

making it even impossible to differ between a white patch and a black patch. However, method 4 has no 

problem since the RGB values in a white patch differ from those in a black patch, even after our light 

change simulation. 

 

 



A remark on light simulation: Additive models were tried as well but worked poorly. The reason for that 

may be that the amount of light returned from a surface depends on the direction of the light and the 

surface’s albedo, both which we don’t know. For example, for a Lambertian surface we know that 

radiance irradiance



  where   is the albedo. Simulating changes in irradiance, just by adding more 

radiation will ignore the albedo and the light direction. Yet, because radiance is linear in the irradiance, 

multiplying the irradiance hitting the surface is the same as multiplying the radiance. So, multiplying the 

radiance simulates increasing the illumination by a certain factor and yet doesn’t ignore the albedo. 

 

 

 

5. P-value estimation: We remind that in the basic algorithm (framed in section 2) one has to decide how 

to estimate a p-value according to which we decide whether a change occurred or not. In this section we 

will present several ways (statistical tests) to do that. We tried the following variations: 

Variation 1: Kolmogorov-Smirnov test 

Variation 2: Kolmogorov-Smirnov test combined with Chebyshev inequality 

Variation 3: Chebyshev inequality 

Instead of trying every variation here with every feature extraction method in section 4, we tested these 

variations with the best method we got in 4 (method 4). Yet, results for other feature extraction 

methods can be found in section 5.4   

 

5.1 Variation 1: Variation 1 was to use the Kolmogorov-Smirnov (KS) goodness of fit test. We took a 

batch of frames of length BATCH_LENGTH and for every model calculated the distances using the 

trained OCSVM for each frame. Than we calculated how well the distribution of these distances does fit 

to the distribution of the distances in the training phase using the KS-test. If they would fit poorly, the 

block  of the middle frame would be classified as changed. We used an asymmetric version of the KS-

test (we used kstest2 in Matlab with 1  for ‘type’), because if distances are more negative than expected, 

this probably means that the features are more likely to signal no-change although the distribution is 

different.  Figure 5.1 shows precision recall graphs for several videos using this statistical test. One can 

see that in several videos precision remains high longer than what we’ve seen in figure 4.5, yet still in 

most of the videos’ precision starts decreasing fast before we achieve satisfying recall. So this variation 

is probably too sensitive. 

 
 

Fig 5.1 



5.2 Variation 2: In variation 2 we tried to get a lower bound on the CDF Using Chebyshev’s inequality 

rule. The inequality is the following: 
2

1
Pr(| | )X EX k

k
    where sigma is the STD. We build a CDF 

such that for each distance in the train set the value would be 
2

2
1
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 (where   is the mean of 

the distances). 

Figure 5.2 shows the results for this method. 

 

 
 

One can see that there is an improvement compared to variation 1,and indeed we used a lower bound 

on the CDF in order to make the test less sensitive. Yet improvement differs between datasets, and 

some are still far from satisfactory. A great disadvantage of this test is that it is based on a distribution in 

a batch. Our batches are pretty small, and estimating a distribution based on them is quite hard. Besides 

that, the fact that we manipulate the training set and only simulate changes, also probably has its effect. 

 

5.3 Variation 3: In variation 3 we used only the Chebyshev inequality. Again, for each model we’ve 

calculated the distance using the OCSVM, but now using the mean and STD of the distances in the train 

set we got from the Chebyshev inequality an upper bound on the probability that such a distance may 

appear.  If that upper bound was small this is probably because of a change in that model. This variation 

gave us the best results, but actually here we used the one sided Chebyshev inequality. That is, the code 

looked like: 

2
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1
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dist current distance from the hyper plane

k E distances in train dist STD distances in train

pvalue
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Figure 5.3 shows a Precision-Recall graph for this variation (using feature extraction method 4). 

 
 

One can see that this variation, combined with these features gives very stable results. In most cases 

precision barely decreases till high recall. 

 

5.4  Other experiments with statistical tests: We also tried to use the Hoeffding inequality in the same 

manner we used the Chebyshev inequality (variation 3). But this inequality needs upper and lower 

bounds on the values of the distances. The bounds that we used were too weak and didn’t enable us to 

distinguish between change and no-change. 

 

For comparison figures 5.4 to 5.6 show other features extraction methods using Chebyshev inequality 

(variation 3).  One can conclude from these graphs that a good statistical test is not enough; it is the 

combination of the statistical test and the features extraction method that leads to proper results. 

 

Fig 5.3 



 
 

 
 

 

Fig 5.4 

Fig 5.5 

Fig 5.6 



(One can also see that the precision recall graphs of AVG2 alone compared to the one with light 

simulation are very similar. This implies that this features extraction method really is invariant to small 

light changes.) 

  

A remark on the results: There are two videos that still give poor results, “traffic” and “thermal”. The 

first suffers from camera jitter, yet jitter in the train is much smaller than in the test. This problem needs 

to be dealt by different means than which we’re discussing now, so we will leave it for now.  The 

problem in the “thermal” video, however, is that in some point the scene is much brighter than in the 

test. Our light simulation should have solved this as it did in the other videos, but this time the 

difference is bigger than usual.  

 

6. Number of models: In this section we will show how the number of models influences the results. There 

is a tradeoff between the number of models in which one parts the image to and the resolution of the 

detection, the algorithm’s time consumption and the quality of the learning phase. In our case, we 

decided that every model will cover 25 pixels (a 5x5 square) and we will resize the image so it will 

contain the right amount of pixels in order to have the wanted number of models. So instead of asking 

how many models we need, we asked what the appropriate resizing factor is. Figure 6.1 shows the f-

measure of several videos with a certain threshold (the final one we used,0.26) at different resizing 

factors. 

 
 

One can see that in this case, in most videos the f-measure gets into a saturation point at about 0.5-0.8. 

Yet, an interesting result is that although one might think that a bigger resizing factor (which leads to 

smaller models in the original image) will give better precision( since the resolution of the detection is 

finer)  in practice the opposite happens. Increasing the resizing factor decreases precision and increases 

recall. A possible explanation is that resizing the image will bring up the need to interpolate data, which 

is only a speculation and adds noise. This makes the model more sensitive because a small change in the 

Fig 6.1 



data will bring to a big change in the model, and so recall will grow and precision will decrease. Another 

possible explanation is that when the resize factor is big every model is associated only with a small 

block in the image, and so it will be sensitive to local changes, whereas with a smaller factor the model 

will be associated with a larger neighborhood making it more invariant to small local changes which we 

probably don’t want to detect.   

We chose to use a factor of 0.8. We preferred this factor over smaller ones since it gave a bit more 

recall, though decreasing precision. Since precision may be a bit misleading some times, we preferred a 

bit more recall over precision; this gave visually the best results. On the other hand, we didn’t take a 

bigger factor, although from figure 6.1 this seems the right thing to do. The reason for that is that bigger 

factors are much more sensitive to changes in the threshold, and decrease their f-measure with a 

slightly different threshold. Figure 6.2 shows this phenomenon in the videos “office”,”sofa” and 

“canoe”. 

 
In these graphs a slightly different threshold (0.35) was used. We can see that the f-measure in 0.8 was 

almost unchanged, whereas the f-measure in factors greater than one decreased. 

Besides that, choosing 0.8 instead of a bigger factor improves time consumption (less models to learn) 

without damaging the results. 

 

7. Post processing: In this section we will offer several ways to post process a binary image in order to 

classify changes more accurately. We will elaborate on three methods: 

Method 1: Adding edges and filling holes 

Method 2: Connecting close components using convex hull 

Method 3: Adding edges and then expanding and shrinking the detections. 

 

7.1  Method 1: The first method is an edge driven method; Using the input frame we extracted the 

edges using the Canny method (using default parameters in Matlab). We added edges which are only 5 

pixels away from a detection to the binary image. (step 1) 

Then we filled all background areas that are not reachable from the border of the image (holes)(using 

the imfill function in Matlab), yet in order to fill areas in the border of the image we add another border 

around the image before filling holes.(steps 2-3) 

We then used morphological open with structural elements of a vertical line and a horizontal line in 

order to delete redundant edges. (step 4) 

Fig 6.2 



Each area filled which is greater than a certain threshold is divided into several smaller parts. The 

division is from top down, left to right to small chunks. Each chunk that its RGB mean (a 3-dimentional 

vector) is far from the mean surrounding the area is deleted. (step 5) 

In the end very small detections are deleted.(step 6) 

The pseudo code would be the following: 

1. Find edges using canny method and add edges that are at most EDGE_THRESH1 from a detection to 

the binary image. 

2. Add a border to the image in order to fill areas in the original border of the image. 

3. Fill holes 

4. Perform morphological open with a horizontal and a vertical line of length LINE_LENGTH1. 

5. For each connected component that was filled: 

5.a If the size of the component is larger than TH_SZ1 do: 

5.a.1 Compute the mean (in every channel) of pixels that are at most TH_SURROUND1 from the 

area. 

5.a.2 number the pixels of the component top-down, left to right and for every chunk of  

SMALLER_AREA1 pixels do: 

5.a.2.a If the norm of the difference between the mean of the chunk and the 

surrounding is greater than TH_MEAN1 delete that chunk 

6. Delete every component that is still smaller than TH_SMALL1 

 Figure 7.1 shows the procedure on a frame from “peopleInShade”. 



 

Fig 6.1 

The first method on “peopleInShade” 

a- The original image 
b- The binary image 
c- After adding close edges 
d- After filling 
e- After deleting big areas with a different mean than their surrounding 
f- Final result, after deleting small components 

 

 This is a very safe method that usually increases both precision and recall, but changes are minor, and 

mostly aren’t visible.  

 

 

 

Fig 7.1 



7.2 Method 2: The second method is a convex hull approach. Connected components that are close 

enough are considered as one connected component (steps 1-2), which is found by the convex hull of 

the two (step 3). 

To avoid redundant fillings due to a concave outline of the object, only pixels close to the original 

detection in the convex hull will be added (step 4). 

Finally very small components are deleted. (step 5) 

In pseudo-code it will look like this: 

1. Add to the binary image any pixel that is at most TH_DIST2 from a detection. 

2. Find connected components and mask with the original binary image. (now we have components 

that are at most 2* TH_DIST2 away from one another labeled as one component. That is, close 

components are labeled the same) 

3. Find the convex hull of every component (that is, for every label). 

4. Delete any new detection that is more than TH_DIST2 pixels away from an original detection. 

5. Delete every component that is still smaller than TH_SMALL2 

Figure 7.2 shows the process on a frame from “sofa” 

 

Fig. 6.2 

The second method on “sofa” 

a- The original image 
b- The binary image 
c- After step 1 
d- After step 2. Every component is marked in one color 
e- After step 3 
f- After step 4. Step 5 has no effect since there are no small components 

Fig 7.2 



 

This method increased recall yet damaged precision because of concave outlines of objects that added a 

lot of false detection around them.  

 

5.3 Method 3: The third method we tried is some sort of a hybrid between the first two. It is, again, 

edge aided. First we delete small components that are far away from any other component (step 1). 

Then edges in the input that are close to detections are added to the binary (step 2). 

In order to connect close components we expand the objects in the binary and then shrink them back 

(steps 3-7). As a result holes are filled, yet the outline of the object is almost unchanged. 

In the end, we again use morphological opening with lines to delete remainders of edges (step 8). 

Since these operations could have deleted some of the original detection we add the original binary 

image (step 9). 

Finally we delete very small components. (step 10)  

In pseudo-code it will look like this: 

1. For each component that is smaller than TH_SZ3: 

1.a calculate the minimal distance in pixels to another component. If it is greater than TH_DIST3 

delete that component. 

2. Find the edges in the original image using the canny method (using default parameters in Matlab), 

add edges that are at most TH_EDGE3 pixels away from a detection to the binary image. 

3. Add a border of width EXPAND3 to the binary image. 

4. Add pixels that are at most EXPAND3 pixels from a detection in the resulting binary (expanding the 

objects) 

5. Find the borders of the expanded objects (we’ve used Prewit edge detector on the new binary 

image) 

6. Leave only detections that are at least EXPAND3 pixels away from the borders found in step 5. 

(shrinking the objects back) 

7. Delete the border added in 3 

8. Use morphological open with a horizontal and a vertical line of length LINE_LENGTH3. (two separate 

open operations) 

9. Add the original binary to the result (maybe things were deleted) 

10. Delete every component that is still smaller than TH_SMALL3 

 

 This method usually increased recall without damaging precision severely. Figure 7.3 shows the process 

on a frame from “thermal” 



 
Fig 6.3 

The third method on “thermal” 
a- The original image 
b- The original binary image 
c- After step 2 
d- After step 4 
e- After step 6 
f- After step 8 
g- After step 9, this is also the final image 

 

 

Fig 7.3 



7.4 Summery of Experimental results 

The following table concludes the precision recall results for each method (using feature extraction 
method 4 and p-value estimation by variation 3) 

Video name No post 
processing 

First method Second method Third method 

Precision Recall Precision Recall Precision Recall Precision Recall 

traffic 0.562 0.7602 0.5981 0.7755 0.492 0.8678 0.4894 0.8553 

thermal 0.4232 0.7495 0.4256 0.7635 0.3916 0.8599 0.4255 0.8656 

sofa 0.8605 0.7934 0.8661 0.82 0.7678 0.9404 0.8282 0.9286 

peopleInShade 0.8338 0.9178 0.8459 0.9427  0.7772 0.9808 0.8217 0.9832 

pedestrians 0.9254 0.7760 0.937 0.7756 0.7513 0.8188 0.8408 0.8547 

office 0.9295 0.9265 0.9416 0.9383 0.8289 0.9822 0.9013 0.9932 

canoe 0.9073 0.7832 0.9537 0.8168 0.8402 0.9343 0.8657 0.9425 

 

Since false detections close to true detections are less problematic, we conducted the following 

experiment: we re-calculated precision for the second method ignoring false detections 5 pixels away 

from the ground truth. As expected the precision jumps: 

 

Video name Precision after post 
processing. 

traffic 0.5256 

thermal 0.4584 

sofa 0.8672 

peopleInShade 0.8170 

pedestrians 0.8926 

office 0.9025 

canoe 0.9069 

 

This indicates that in most videos, for the second method, false detections were caused due to concave 

outlines that were bounded by a convex shape. 

 

The following table shows the f-measure for each video and method, calculated from the first table: 

 

Video name No post 
processing 

First method Second method Third method 

traffic 0.6462 0.6753 0.6279 0.6226 

thermal 0.541 0.5465 0.5381 0.571 

sofa 0.8256 0.8424 0.8454 0.8755 

peopleInShade 0.8738 0.8917 0.8672 0.8952 

pedestrians 0.8441 0.8487 0.7836 0.8477 

office 0.928 0.94 0.8991 0.945 

canoe 0.8407 0.88 0.8848 0.9025 

 

Looking at the tables above we’ve decided to use the third method. 



8. Conclusions and possible future work: In this work we’ve gone over several feature extraction methods, 

acknowledging that features during train should vary in the same way they vary in the test. Invariant 

features will lead to an “over fitted” model which will be very sensitive. Yet features that vary differently 

in train and test will also be too sensitive.  In order to solve that we offered to simulate changes during 

training phase, and introduced a way to simulate light changes. We’ve seen that in light simulation it 

would be better to multiply the noise instead of adding it.  Future work can be done in order to simulate 

camera jitter as in the “traffic” video or find other ways to overcome this problem like baseline-

alignment.  Also one might try to find a way to determine automatically to what extent should we 

simulate light changes, as we’ve seen, the change needed in most of the videos was different from the 

change needed in the “thermal” video. 

We’ve tried several statistical tests, and concluded that it is better to estimate the probability that a 

certain sample is taken from some distribution as using chebyshev inequality, than to do so for a set of 

samples like in the KS test. We’ve investigated how the number of models influences precision and recall 

and decided on a resize factor of 0.8. Three methods for post processing were introduced. Future work 

can focus on shade subtraction which afterwards will ease the post processing part and probably will 

make it more accurate.   
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Technical Appendix 

The parameters we use during this work: 

 N=100 – the number of frames in the training set. (see section 1) 

The sigma of the Gaussian in light simulation -  120 (probably, this will need to be changed when 
working with images with a significantly different size than what we have worked with). (see section 4.4) 

RANGE=[0.5 2] - the range from which a number, r, is picked during light simulation in order to 
transform the Gaussian to the interval between 1 and r. (see section 4.4) 

Resize factor: 0.8 – A factor for resizing the image, thus determining the number of blocks in an image 
(see section 6) 

Block length: 5 - Each frame is divided into blocks of size (Block length) x (Block length) , see section 2 

Threshold for p-value : 0.26 – A threshold for determining according to a p-value whether a change 
occurred or not. A p-value smaller than the threshold indicates change. This is the threshold for 
variation 3 in section 5 (the final one we used) 

BATCH_LENGTH=21 – The number of frames used when using variations 1 and 2 in section 5. 

EDGE_THRESH1 = 5 – The maximal distance from a detection for an edge to be added to the binary 
image in step 1 in the first post processing method (section 7.1) 

LINE_LENGTH1 = 3 – The length of the structural elements in step 4 in the first post processing method 
(section 7.1) 

TH_SZ1 = 200 – The minimal number of pixels in a component in order for it to be considered as too big 
in step 5.a in  the first post processing method (section 7.1) 

TH_SURROUND1=10 – The distance from a component, defining its surrounding in step 5.a.1  in the first 
post processing method (section 7.1) 

SMALLER_AREA1 = 50 – The chunks’ size into which big components are divided to in step 5.a.2 in the 
first post processing method (section 7.1) 

TH_MEAN1 = 20 – The maximal difference between a chunk’s mean and the surrounding mean in order 
not to delete that chunk in step 5.a.2.a in the first post processing method (section 7.1) 

TH_SMALL1 = 200 – The maximal number of pixels in a component in order to consider it as a small 
component in step 6 in the first post processing method (section 7.1) 

TH_DIST2 = 5 – If two components have a path between them, so every pixel in that path is at most 
TH_DIST2 pixels away from a detection, these components will be considered as one in the second post 
processing method (section 7.2 see steps 1-2). That is, this parameter specifies how close components 
should be in order to be united. This parameter also restricts the convex hull of the merged 
components, see step 4. 



TH_SMALL2 = 200 - The maximal number of pixels in a component in order to consider it as a small 
component in step 5 in the second post processing method (section 7.2) 

TH_SZ3 = 150 – The maximal number of pixels in a component in order to consider it small in step 1 in 
the third post processing method (section 7.3) 

TH_DIST3 = 15 – The minimal distance from a component to another component in order for it to be 
considered as a distant component in step 1.a  in the third post processing method (section 7.3) 

TH_EDGE3 = 5 - The maximal distance from a detection for an edge to be added to the binary image in 
step 2 in the third post processing method (section 7.3) 

EXPAND3 = 7 – The number of pixels in which to expand and shrink the detections in steps 3-6 in the 
third post processing method (section 7.3) 

LINE_LENGTH3 = 3 – The length of the structural elements in step 8 in the third post processing method 
(section 7.3) 

TH_SMALL3 = 200 - The maximal number of pixels in a component in order to consider it as a small 
component in step 10 in the third post processing method (section 7.3) 

 

  



Flow Chart of Supplied Algorithm 

 

  



 

  



 

 

  



 


